American National Standard

Sterilization of health care products — Ethylene oxide — Requirements for development, validation and routine control of a sterilization process for medical devices

PREVIEW COPY
This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Objectives and uses of AAMI standards and recommended practices

It is most important that the objectives and potential uses of an AAMI product standard or recommended practice are clearly understood. The objectives of AAMI's technical development program derive from AAMI's overall mission: the advancement of medical instrumentation. Essential to such advancement are (1) a continued increase in the safe and effective application of current technologies to patient care, and (2) the encouragement of new technologies. It is AAMI's view that standards and recommended practices can contribute significantly to the advancement of medical instrumentation, provided that they are drafted with attention to these objectives and provided that arbitrary and restrictive uses are avoided.

A voluntary standard for a medical device recommends to the manufacturer the information that should be provided with or on the product, basic safety and performance criteria that should be considered in qualifying the device for clinical use, and the measurement techniques that can be used to determine whether the device conforms with the safety and performance criteria and/or to compare the performance characteristics of different products. Some standards emphasize the information that should be provided with the device, including performance characteristics, instructions for use, warnings and precautions, and other data considered important in ensuring the safe and effective use of the device in the clinical environment. Recommending the disclosure of performance characteristics often necessitates the development of specialized test methods to facilitate uniformity in reporting; reaching consensus on these tests can represent a considerable part of committee work. When a drafting committee determines that clinical concerns warrant the establishment of minimum safety and performance criteria, referee tests must be provided and the reasons for establishing the criteria must be documented in the rationale.

A recommended practice provides guidelines for the use, care, and/or processing of a medical device or system. A recommended practice does not address device performance per se, but rather procedures and practices that will help ensure that a device is used safely and effectively and that its performance will be maintained.

Although a device standard is primarily directed to the manufacturer, it may also be of value to the potential purchaser or user of the device as a frame of reference for device evaluation. Similarly, even though a recommended practice is usually oriented towards healthcare professionals, it may be useful to the manufacturer in better understanding the environment in which a medical device will be used. Also, some recommended practices, while not addressing device performance criteria, provide guidelines to industrial personnel on such subjects as sterilization processing, methods of collecting data to establish safety and efficacy, human engineering, and other processing or evaluation techniques; such guidelines may be useful to healthcare professionals in understanding industrial practices.

In determining whether an AAMI standard or recommended practice is relevant to the specific needs of a potential user of the document, several important concepts must be recognized:

All AAMI standards and recommended practices are voluntary (unless, of course, they are adopted by government regulatory or procurement authorities). The application of a standard or recommended practice is solely within the discretion and professional judgment of the user of the document.

Each AAMI standard or recommended practice reflects the collective expertise of a committee of healthcare professionals and industrial representatives, whose work has been reviewed nationally (and sometimes internationally). As such, the consensus recommendations embodied in a standard or recommended practice are intended to respond to clinical needs and, ultimately, to help ensure patient safety. A standard or recommended practice is limited, however, in the sense that it responds generally to perceived risks and conditions that may not always be relevant to specific situations. A standard or recommended practice is an important reference in responsible decision-making, but it should never replace responsible decision-making.

Despite periodic review and revision (at least once every five years), a standard or recommended practice is necessarily a static document applied to a dynamic technology. Therefore, a standards user must carefully review the reasons why the document was initially developed and the specific rationale for each of its provisions. This review will reveal whether the document remains relevant to the specific needs of the user.

Particular care should be taken in applying a product standard or existing devices and equipment, and in applying a recommended practice to current procedures and practices. While observed or potential risks with existing equipment typically form the basis for the safety and performance criteria defined in a standard, professional judgment must be used in applying these criteria to existing equipment. No single source of information will serve to identify a particular product as "unsafe." A voluntary standard can be used as one resource, but the ultimate decision as to product safety and efficacy must take into account the specifics of its utilization and, of course, cost-benefit considerations. Similarly, a recommended practice should be analyzed in the context of the specific needs and resources of the individual institution or firm. Again, the rationale accompanying each AAMI standard and recommended practice is an excellent guide to the reasoning and data underlying its provision.

In summary, a standard or recommended practice is truly useful only when it is used in conjunction with other sources of information and policy guidance and in the context of professional experience and judgment.

INTERPRETATIONS OF AAMI STANDARDS AND RECOMMENDED PRACTICES

Requests for interpretations of AAMI standards and recommended practices must be made in writing, to the AAMI Vice President, Standards Policy and Programs. An official interpretation must be approved by letter ballot of the originating committee and subsequently reviewed and approved by the AAMI Standards Board. The interpretation will become official and representation of the Association only upon exhaustion of any appeals and upon publication of notice of interpretation in the "Standards Monitor" section of the AAMI News. The Association for the Advancement of Medical Instrumentation disclaims responsibility for any characterization or explanation of a standard or recommended practice which has not been developed and communicated in accordance with this procedure and which is not published, by appropriate notice, as an official interpretation in the AAMI News.
Sterilization of health care products — Ethylene oxide — Requirements for development, validation and routine control of a sterilization process for medical devices

Approved 30 March 2015 by
Association for the Advancement of Medical Instrumentation

Approved 27 July 2015 by
American National Standards Institute

Abstract: Specifies requirements for the development, validation, and routine control of an ethylene oxide sterilization process for medical devices.

Keywords: EO, industrial sterilization, validation, routine control, medical device, product release, process control, process monitoring
AAMI Standard

This Association for the Advancement of Medical Instrumentation (AAMI) standard implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI standard does not in any respect preclude anyone, whether they have approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. AAMI standards are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI standard may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Interested parties may obtain current information on all AAMI standards by calling or writing AAMI.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Advancing Safety in Medical Technology

Published by

Association for the Advancement of Medical Instrumentation
4301 North Fairfax Drive, Suite 301
Arlington, VA 22203

© 2015 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

This publication is subject to copyright claims of ISO, ANSI, and AAMI. No part of this publication may be reproduced or distributed in any form, including an electronic retrieval system, without the prior written permission of AAMI. All requests pertaining to this document should be submitted to AAMI. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, contact AAMI, 4301 North Fairfax Drive, Suite 301, Arlington, VA 22203. Phone: (703) 525-4890; Fax: (703) 276-0793.

Printed in the United States of America

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary of equivalent standards</td>
<td>vi</td>
</tr>
<tr>
<td>Committee representation</td>
<td>vii</td>
</tr>
<tr>
<td>Background of AAMI adoption of ISO 11135-1:2007</td>
<td>x</td>
</tr>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>Introduction</td>
<td>xii</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Inclusions</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Exclusions</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>2</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>3</td>
</tr>
<tr>
<td>4 Quality management systems</td>
<td>11</td>
</tr>
<tr>
<td>4.1 Documentation</td>
<td>11</td>
</tr>
<tr>
<td>4.2 Management responsibility</td>
<td>11</td>
</tr>
<tr>
<td>4.3 Product realization</td>
<td>11</td>
</tr>
<tr>
<td>4.4 Measurement, analysis and improvement — Control of nonconforming product</td>
<td>11</td>
</tr>
<tr>
<td>5 Sterilizing agent characterization</td>
<td>12</td>
</tr>
<tr>
<td>5.1 General</td>
<td>12</td>
</tr>
<tr>
<td>5.2 Sterilizing agent</td>
<td>12</td>
</tr>
<tr>
<td>5.3 Microbicidal effectiveness</td>
<td>12</td>
</tr>
<tr>
<td>5.4 Material effects</td>
<td>12</td>
</tr>
<tr>
<td>5.5 Safety and the environment</td>
<td>12</td>
</tr>
<tr>
<td>6 Process and equipment characterization</td>
<td>12</td>
</tr>
<tr>
<td>6.1 General</td>
<td>12</td>
</tr>
<tr>
<td>6.2 Process characterization</td>
<td>13</td>
</tr>
<tr>
<td>6.3 Equipment characterization</td>
<td>14</td>
</tr>
<tr>
<td>7 Product definition</td>
<td>15</td>
</tr>
<tr>
<td>7.1 General</td>
<td>15</td>
</tr>
<tr>
<td>7.2 Product safety, quality and performance</td>
<td>15</td>
</tr>
<tr>
<td>7.3 Microbiological quality</td>
<td>15</td>
</tr>
<tr>
<td>7.4 Documentation</td>
<td>16</td>
</tr>
<tr>
<td>8 Process definition</td>
<td>16</td>
</tr>
<tr>
<td>9 Validation</td>
<td>17</td>
</tr>
<tr>
<td>9.1 General</td>
<td>17</td>
</tr>
<tr>
<td>9.2 Installation qualification, IQ</td>
<td>17</td>
</tr>
<tr>
<td>9.2.1 Equipment</td>
<td>17</td>
</tr>
<tr>
<td>9.2.2 Installation qualification</td>
<td>17</td>
</tr>
<tr>
<td>9.3 Operational qualification, OQ</td>
<td>18</td>
</tr>
<tr>
<td>9.4 Performance qualification, PQ</td>
<td>18</td>
</tr>
<tr>
<td>9.4.1 General</td>
<td>18</td>
</tr>
<tr>
<td>9.4.2 Performance qualification — Microbiological</td>
<td>19</td>
</tr>
<tr>
<td>9.4.3 Performance qualification — Physical</td>
<td>19</td>
</tr>
<tr>
<td>9.5 Review and approval of validation</td>
<td>20</td>
</tr>
<tr>
<td>10 Routine monitoring and control</td>
<td>22</td>
</tr>
<tr>
<td>11 Product release from sterilization</td>
<td>24</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>12 Maintaining process effectiveness</td>
<td>24</td>
</tr>
<tr>
<td>12.1 General</td>
<td>24</td>
</tr>
<tr>
<td>12.2 Maintenance of equipment</td>
<td>24</td>
</tr>
<tr>
<td>12.3 Requalification</td>
<td>25</td>
</tr>
<tr>
<td>12.4 Assessment of change</td>
<td>25</td>
</tr>
<tr>
<td>12.5 Assessment of equivalence</td>
<td>25</td>
</tr>
<tr>
<td>12.5.1 Process Equivalence</td>
<td>25</td>
</tr>
<tr>
<td>12.5.2 Product</td>
<td>26</td>
</tr>
<tr>
<td>Annex A (normative) Determination of lethal rate of the sterilization process — Biological indicator/bioburden approach</td>
<td>27</td>
</tr>
<tr>
<td>A.1 General</td>
<td>27</td>
</tr>
<tr>
<td>A.2 Procedure</td>
<td>27</td>
</tr>
<tr>
<td>Annex B (normative) Conservative determination of lethal rate of the sterilization process — Overkill approach</td>
<td>28</td>
</tr>
<tr>
<td>B.1 General</td>
<td>28</td>
</tr>
<tr>
<td>B.2 Procedure</td>
<td>28</td>
</tr>
<tr>
<td>Annex C (informative) Temperature sensors, RH sensors and biological indicator numbers</td>
<td>30</td>
</tr>
<tr>
<td>C.1 Temperature sensors</td>
<td>30</td>
</tr>
<tr>
<td>C.2 Humidity sensors</td>
<td>31</td>
</tr>
<tr>
<td>C.3 Biological Indicators</td>
<td>31</td>
</tr>
<tr>
<td>Annex D (informative) Guidance on the application of the normative requirements</td>
<td>33</td>
</tr>
<tr>
<td>D.1 Scope</td>
<td>33</td>
</tr>
<tr>
<td>D.2 Normative references</td>
<td>33</td>
</tr>
<tr>
<td>D.3 Terms and definitions</td>
<td>33</td>
</tr>
<tr>
<td>D.4 Quality management systems</td>
<td>33</td>
</tr>
<tr>
<td>D.4.1 Documentation</td>
<td>33</td>
</tr>
<tr>
<td>D.4.2 Management responsibility</td>
<td>33</td>
</tr>
<tr>
<td>D.4.3 Product realization</td>
<td>34</td>
</tr>
<tr>
<td>D.4.4 Measurement, analysis and improvement — Control of non-conforming product</td>
<td>34</td>
</tr>
<tr>
<td>D.5 Sterilizing agent characterization</td>
<td>34</td>
</tr>
<tr>
<td>D.5.1 General</td>
<td>34</td>
</tr>
<tr>
<td>D.5.2 Sterilizing agent</td>
<td>35</td>
</tr>
<tr>
<td>D.5.3 Microbicidal effectiveness</td>
<td>35</td>
</tr>
<tr>
<td>D.5.4 Material effects</td>
<td>35</td>
</tr>
<tr>
<td>D.5.5 Safety and the environment</td>
<td>35</td>
</tr>
<tr>
<td>D.6 Process and equipment characterization</td>
<td>36</td>
</tr>
<tr>
<td>D.6.1 General</td>
<td>36</td>
</tr>
<tr>
<td>D.6.2 Process characterization</td>
<td>36</td>
</tr>
<tr>
<td>D.6.3 Equipment characterization</td>
<td>38</td>
</tr>
<tr>
<td>D.7 Product definition</td>
<td>40</td>
</tr>
<tr>
<td>D.7.1 General</td>
<td>40</td>
</tr>
<tr>
<td>D.7.2 Product safety, quality and performance</td>
<td>43</td>
</tr>
<tr>
<td>D.7.3 Microbiological quality</td>
<td>45</td>
</tr>
<tr>
<td>D.7.4 Documentation</td>
<td>45</td>
</tr>
<tr>
<td>D.8 Process definition</td>
<td>45</td>
</tr>
<tr>
<td>D.9 Validation</td>
<td>49</td>
</tr>
<tr>
<td>D.9.1 General</td>
<td>49</td>
</tr>
</tbody>
</table>
D.9.2 Installation qualification ... 49
 D.9.2.1 Equipment ... 49
 D.9.2.2 Installation qualification ... 50
D.9.3 Operational qualification .. 51
D.9.4 Performance qualification .. 53
 D.9.4.1 General ... 53
 D.9.4.2 Performance qualification — Microbiological 54
 D.9.4.3 Performance qualification — Physical 55
 D.9.4.4 Review and approval of validation 56
D.10 Routine monitoring and control ... 57
D.11 Product release from sterilization ... 60
D.12 Maintaining process effectiveness .. 60
 D.12.1 General ... 60
 D.12.2 Maintenance of equipment .. 61
 D.12.3 Requalification ... 62
 D.12.4 Assessment of change .. 64
 D.12.5 Assessment of equivalence .. 65
 D.12.5.1 Process equivalence ... 65
 D.12.5.2 Criteria for process equivalence 65
 D.12.5.3 Determination of process equivalence 66
 D.12.5.4 Process analysis and evaluation 66
 D.12.5.5 Evaluation of pre-conditioning or aeration areas 66
 D.12.5.6 Evaluation of sterilization chamber performance 66
 D.12.5.7 Microbiological evaluation .. 67
 D.12.5.8 Results evaluation .. 67
 D.12.5.9 Maintenance of equivalence 68
 D.12.5.10 Documentation ... 68
 D.12.5.11 Product ... 68
 D.12.5.11.1 Product family .. 68
 D.12.5.11.2 Determination of adverse effects to product 69
 D.12.5.11.3 Determination of product design effects 69
 D.12.5.11.4 Determination of product material and characteristics effects 70
 D.12.5.11.5 Determination of sterile barrier system effects 70
 D.12.5.11.6 Determination of load configuration effects 70
 D.12.5.11.7 Conclusions of product adoption evaluation 70
D.13 Guidance on Annex A — Determination of lethal rate of the sterilization process — Biological indicator/bioburden approach ... 70
 D.13.1 [A.1] General ... 70
 D.13.2 [A.2] Procedure ... 72
D.14 Guidance on Annex B — Conservative determination of lethal rate of the sterilization process — Overkill approach ... 73
 D.14.1 [B.1] General ... 73
 D.14.2 [B.2] Procedure ... 74
Annex E (normative) Single Lot Release ... 75
 E.1 General ... 75
 E.2 Procedure ... 75
Bibliography ... 77
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. AAMI maintains a current list of each International Standard that has been adopted by AAMI (and ANSI). Available on the AAMI website at the address below, this list gives the corresponding U.S. designation and level of equivalency to the International Standard.

www.aami.org/standards/glossary.pdf
Committee representation

Association for the Advancement of Medical Instrumentation
Ethylene Oxide Sterilization Working Group

The adoption of ISO 11135:2014 as an AAMI standard was initiated by the Ethylene Oxide Sterilization Working Group of the AAMI Sterilization Standards Committee (AAMI/ST), which also functions as a U.S. Technical Advisory Group to the relevant work in the International Organization for Standardization (ISO). U.S. representatives from the AAMI Ethylene Oxide Sterilization Working Group (U.S. Sub-TAG for ISO/TC 198/WG 1), chaired by Jeff Martin and Gerry O’Dell, played an active part in developing the ISO Standard.

Committee approval of this document does not necessarily imply that all committee members voted for its approval.

At the time this document was published, the **AAMI Ethylene Oxide Sterilization Working Group** had the following members:

Cochairs

Jeff Martin
Gerry O’Dell

Members

Erin Armstrong, B Braun of America Inc
Ed Arscott, NAMSA
Anne Booth, Booth Scientific Inc
Lloyd Brown, Covidien
Tim Carlson, Becton Dickinson & Company
Sarah Chamberlain, Accurus Labs Services
Denny Christensen, Mesa Laboratories Biological Indicator Division- Bozeman Facility
Gary Cranston, Consulting & Technical Services/PCS
Elaine Daniell, CR Bard
Douglas Davie, Sterilization Validation Services
Dari Diage, Direct Flow Medical Inc
Mary Ann Drosnock, Healthmark Industries Company Inc
Paul Foint, Company for Individuals
William Fitzgerald, FitzGerald & Associates Ltd
Dan Floyd, Nelson Laboratories Inc
Lisa Foster, Adiuvo QS & SA Consulting
Zory Glaser, Johns Hopkins University-School of Public Health
Mike Groendyk, Javelin Medical
Doug Harbrecht, Sterility Assurance LLC
Arthur Harris, Cook Inc
Deborah Havlik, Hospira Worldwide Inc
Jason Hedrick, Medtronic Inc WHQ Campus
Krista Howard, WL Gore & Associates Inc
Danny Hutson, CareFusion
Nupur Jain, Intuitive Surgical Inc
Carolyn Kinsley, LexaMed Ltd
Karen Kowalczyk, Centurion Sterilization Services
Christine Loehbaugh, Edwards LifeSciences
Jeff Martin, Alcon Laboratories Inc
Ted May, Andersen Products Inc
Patrick McCormick, Bausch & Lomb Inc
David McGoldrick, Abbott Laboratories
Rusty Mills, GE Healthcare
Gary Mitchel, Johnson & Johnson
Sarah Mowitt, Mowitt, Sarah - 322573
Gerry O’Dell, Gerry O’Dell Consulting
Dave Parente, Ecolab
Michelle Peterson, Stryker Instruments Division
Nancy Rakiewicz, IUVO BioScience
Beth Ridgeway, Mesa Laboratories Biological Indicator Division- Bozeman Facility
Manny Saavedra, Halyard Health
Jon Seulean, Terumo BCT
AAMI Sterilization Standards Committee

Cochairs
Victoria M. Hitchins, PhD, FDA/CDRH
William E. Young, Boston Scientific Corporation

Members
Trabue D. Bryans, AppTec
Nancy Chobin, RN CSPDM, St Barnabas Healthcare System
Charles Cogdill, Boston Scientific Corporation
Ramona Conner, RN MSN CNOR, Association of Perioperative Registered Nurses
Jacqueline Daley, Association for Professionals in Infection Control and Epidemiology
Kimbrell Darnell, CR Bard
Lisa Foster, Sterigenics International
James M. Gibson, Jr., JM Gibson Associates
Joel R. Gorski, PhD, NAMSA
Deborah A. Havlik, Hospira Inc
Victoria M. Hitchins, PhD, FDA/CDRH
Danny Hutson, Cardinal Health (MP&S)
Lois Atkinson Jones, MS, (Independent Expert)
Susan G. Klacik, AS BS, IAHCSMM
Byron J. Lambert, PhD, Abbott Laboratories
Colleen Patricia Landers, RN, Canadian Standards Association
David Liu, Johnson & Johnson
Jeff Martin, Alcon Laboratories Inc
Patrick J. McCormick, PhD, Bausch & Lomb Inc
Susie McDonald, American Society for Healthcare Central Service Professionals
Thomas K. Moore, Getinge USA
Barry F. J. Page, Cook Endoscopy
Nancy J. Rakiewicz, Ethox International Inc
Phil M. Schneider, 3M Healthcare
Michael H. Scholla, Dupont Nonwovens
Mark Seymour, Baxter Healthcare Corporation
Andrew Sharavara, Propper Manufacturing Co Inc
William N. Thompson, TYCO Healthcare
John W. Walker, STERIS Corporation
James L. Whitby, MA, MB, FRCP, University of Western Ontario
Thelma Wilcott, Becton Dickinson & Company
Martell Kress Winters, BS SM, Nelson Laboratories Inc

Alternates
Lloyd Brown, TYCO Healthcare
Lina C. Bueno, Dupont Nonwovens
Dave Dion, Cardinal Health (MP&S)
Thomas J. Frazier, Johnson & Johnson
Kathy Hoffman, Sterigenics International
Clark W. Houghtling, STERIS Corporation
Jim Kaiser, Bausch & Lomb Inc
Joseph J. Lasich, BS, Alcon Laboratories Inc
Chiu S. Lin, PhD, FDA/CDRH
Natalie Lind, IAHCSMM
Lisa N. MacDonald, Becton Dickinson & Company
Ralph Makenen, Boston Scientific Corporation
Mary S. Mayo, CR Bard
David Ford McGoldrick, BS, Abbott Laboratories
Jerry R. Nelson, MS PhD, Nelson Laboratories Inc
Janet M. Prust, 3M Healthcare
Mike Sadowski, Baxter Healthcare Corporation
Ralph Stick, AppTec
Jason Voisinet, Ethox International Inc
Valerie Welter, Hospira Inc
William E. Young, Boston Scientific Corporation

NOTE—Participation by federal agency representatives in the development of this standard does not constitute endorsement by the federal government or any of its agencies.
Background of ANSI/AAMI adoption of ISO 11135:2014

The International Organization for Standardization (ISO) is a worldwide federation of national standards bodies. The United States is one of the ISO members that took an active role in the development of this standard.

ISO 11135 was developed by ISO Technical Committee 198 to fill a need for an international standard for ethylene oxide sterilization of health care products. The original edition of the standard was published in 1994, and the document is now in its third edition. The new edition combines the previous standard—ISO 11135-1, which contained the normative requirements for validation and routine control—with ISO/TS 11135-2, which contained the bulk of the guidance for ethylene oxide sterilization. (These ISO documents had also been adopted by AAMI as an American National Standard and a Technical Information Report [TIR], respectively.)

The AAMI Ethylene Oxide Sterilization Working Group (AAMI ST/WG 01) considered adoption of the standard concurrent with the development of the U.S. position on the third edition of ISO 11135 and, after publication of the ISO standard, agreed to adopt this new edition.

AAMI had previously published a series of TIRs providing additional guidance on ethylene oxide sterilization and, at the time of the adoption of ISO 1135:2014, these TIRs were being revised to ensure alignment with this new standard. In addition, a new TIR was being developed to explain the differences between this new edition and the earlier standard and guidance document it replaces.

U.S. participation in ISO/TC 198 is organized through the U.S. Technical Advisory Group for ISO/TC 198, administered by the Association for the Advancement of Medical Instrumentation (AAMI). The United States made a considerable contribution to this standard.

As used within the context of this standard, “shall” indicates requirements to be followed strictly in order to conform to the standard; “should” indicates that among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others, that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action is undesirable but not prohibited; “may” is used to indicate that a course of action is permissible within the limits of the standard; “can” is used as a statement of possibility and capability; “must” is used only for those situations that cannot be otherwise, as in the example “Monday must follow Sunday.”

The concepts incorporated in this standard should not be considered inflexible or static. This standard, like any other, must be reviewed and updated periodically to assimilate progressive technological developments. To remain relevant, it must be modified as technological advances are made and as new data comes to light. Suggestions for improving this standard are invited. Comments on this standard are invited and should be sent to AAMI, Attn: Standards Department, 4301 North Fairfax Drive, Ste 301, Arlington, VA 22203

NOTE—Beginning with the foreword on page xi, this American National Standard is identical to ISO 11135-1:2014, except for two minor errors in the ISO version that have been corrected in this adoption (and which are indicated in footnotes in sections C.1 and D.12.5).
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 198, Sterilization of health care products.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Introduction

A sterile medical device is one that is free of viable microorganisms. Medical devices produced under standard manufacturing conditions in accordance with the requirements for quality management systems (see for example ISO 13485) might, prior to sterilization, have microorganisms on them, albeit in low numbers. Such medical devices are non-sterile. The purpose of sterilization is to inactivate the microbiological contaminants and thereby transform the non-sterile medical devices into sterile ones.

The kinetics of inactivation of a pure culture of microorganisms by physical and/or chemical agents used to sterilize medical devices can generally best be described by an exponential relationship between the numbers of microorganisms surviving and the extent of treatment with the ethylene oxide (EO); inevitably, this means that there is always a finite probability that a microorganism might survive regardless of the extent of treatment applied. For a given treatment, the probability of survival is determined by the number and resistance of microorganisms, and by the environment in which the organisms exist during treatment. It follows that the sterility of any one medical device in a population subjected to sterilization processing cannot be guaranteed, and the sterility of a processed population is defined in terms of the probability of there being a viable microorganism present on a medical device.

ISO 11135 describes requirements that, if met, will provide an ethylene oxide sterilization process intended to sterilize medical devices that has appropriate microbicidal activity. Furthermore, compliance with the requirements ensures that validations conducted following this International Standard will provide products that meet the defined requirements for sterile products with a high degree of confidence. The specification for this probability is a matter for regulatory authorities and can vary from country to country (see for example EN 556-1 and ANSI/AAMI ST67).

Generic requirements of the quality management systems for design and development, production, installation, and servicing are given in ISO 9001, and particular requirements for quality management systems for medical device production are given in ISO 13485. The standards for quality management systems recognize that, for certain processes used in manufacturing or reprocessing, the effectiveness of the process cannot be fully verified by subsequent inspection and testing of the product. Sterilization is an example of such a process. For this reason, sterilization processes are validated for use, the performance of the sterilization process monitored routinely and the equipment maintained.

Exposure to a properly validated, accurately controlled sterilization process is not the only factor associated with the provision of reliable assurance that the product is sterile and, in this regard, suitable for its intended use. Attention is therefore given to a number of considerations including:

- the microbiological status of incoming raw materials and/or components;
- the validation and routine control of any cleaning and disinfection procedures used on the product;
- the control of the environment in which the product is manufactured or reprocessed, assembled, and packaged;
- the control of equipment and processes;
- the control of personnel and their hygiene;
- the manner and materials in which the product is packaged; and
- the conditions under which product is stored.

The type of contamination on a product to be sterilized varies, and this impacts upon the effectiveness of a sterilization process. Products that have been used in a health care setting and are being presented for resterilization in accordance with the manufacturer's instructions (see ISO 17664) are a special case. There is the potential for such products to possess a wide range of contaminating microorganisms and residual inorganic and/or organic contamination in spite of the application of a cleaning process. Hence, it is important to pay particular attention to the validation and control of the cleaning and disinfection processes used during reprocessing. Mixed product loads are common in health care facilities with throughput volumes dictated by historical and predicted demand for sterile product.

The requirements are the normative parts of ISO 11135 with which compliance is claimed. The guidance given in the informative annexes is not normative and is not provided as a checklist for auditors. The guidance in Annex D
provides explanations and methods that are regarded as being suitable means for complying with the requirements for industry and health care facilities.

The guidance, in Annex D, is intended for people who have a basic knowledge of the principles of EO sterilization. Methods other than those given in the guidance can be used if they are effective in achieving compliance with the requirements of ISO 11135.

The development, validation, and routine control of a sterilization process comprises a number of discrete but interrelated activities; e.g., calibration, maintenance, product definition, process definition, installation qualification, operational qualification, and performance qualification. While the activities required by ISO 11135 have been grouped together and are presented in a particular order, ISO 11135 does not require that the activities be performed in the order in which they are presented. The activities required are not necessarily sequential, as the programme of development and validation may be iterative. It is possible that performing these different activities will involve a number of separate individuals and/or organizations, each of whom undertakes one or more of these activities. This International Standard does not specify the particular individuals or organizations to carry out the activities.

It is important that patient safety be addressed by minimizing exposure to EO and its by-products during normal product use. ISO 10993-7 specifies limits for EO and ethylene chlorohydrin (ECH); however, no exposure limits are set for ethylene glycol (EG) because risk assessment indicates that when EO residues are controlled, it is unlikely that biologically significant residues of EG would be present.
PREVIEW COPY

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
American National Standard

Sterilization of health care products — Ethylene oxide — Requirements for the development, validation and routine control of a sterilization process for medical devices

1 Scope

1.1 Inclusions

This International Standard specifies requirements for the development, validation, and routine control of an ethylene oxide sterilization process for medical devices in both the industrial and health care facility settings, and it acknowledges the similarities and differences between the two applications.

NOTE 1 Among the similarities are the common need for quality systems, staff training, and proper safety measures. The major differences relate to the unique physical and organizational conditions in health care facilities, and to the initial condition of reusable medical devices being presented for sterilization.

NOTE 2 Health care facilities differ from medical device manufacturers in the physical design of processing areas, in the equipment used, and in the availability of personnel with adequate levels of training and experience. The primary function of the health care facility is to provide patient care; medical device reprocessing is just one of a myriad of activities that are performed to support that function.

NOTE 3 In terms of the initial condition of medical devices, medical device manufacturers generally sterilize large numbers of similar medical devices that have been produced from virgin material. Health care facilities, on the other hand, must handle and process both new medical devices and reusable medical devices of different descriptions and with varying levels of bioburden. They are therefore faced with the additional challenges of cleaning, evaluating, preparing, and packaging a medical device prior to sterilization. In this International Standard, alternative approaches and guidance specific to health care facilities are identified as such.

NOTE 4 EO gas and its mixtures are effective sterilants that are primarily used for heat- and/or moisture-sensitive medical devices that cannot be moist heat sterilized.

NOTE 5 Although the scope of this International Standard is limited to medical devices, it specifies requirements and provides guidance that can be applicable to other health care products.

1.2 Exclusions

1.2.1 This International Standard does not specify requirements for the development, validation, and routine control of a process for inactivating the causative agents of spongiform encephalopathies, such as scrapie, bovine spongiform encephalopathy, and Creutzfeldt-Jakob disease. Specific recommendations have been produced in particular countries for the processing of materials potentially contaminated with these agents.

NOTE See ISO 22442-1, ISO 22442-2 and ISO 22442-3.

1.2.2 This International Standard does not detail a specified requirement for designating a medical device as sterile.
NOTE Attention is drawn to national or regional requirements for designating medical devices as “sterile”. See for example EN 556–1 or ANSI/AAMI ST67.

1.2.3 This International Standard does not specify a quality management system for the control of all stages of production of medical devices.

NOTE The effective implementation of defined and documented procedures is necessary for the development, validation, and routine control of a sterilization process for medical devices. Such procedures are commonly considered to be elements of a quality management system. It is not a requirement of this International Standard to have a full quality management system during manufacture or reprocessing. The necessary elements are normatively referenced at appropriate places in the text (see, in particular, Clause 4). Attention is drawn to the standards for quality management systems (see ISO 13485) that control all stages of production or reprocessing of medical devices. National and/or regional regulations for the provision of medical devices might require the implementation of a full quality management system and the assessment of that system by a third party.

1.2.4 This International Standard does not specify requirements for occupational safety associated with the design and operation of EO sterilization facilities.

NOTE 1 For further information on safety, see examples in the Bibliography. National or regional regulations may also exist.

NOTE 2 EO is toxic, flammable, and explosive. Attention is drawn to the possible existence in some countries of regulations giving safety requirements for handling EO and for premises in which it is used.

1.2.5 This International Standard does not cover sterilization by injecting EO or mixtures containing EO directly into packages or a flexible chamber.

NOTE See ISO 14937 for these types of EO processes.

1.2.6 This International Standard does not cover analytical methods for determining levels of residual EO and/or its reaction products.

NOTE 1 For further information see ISO 10993-7.

NOTE 2 Attention is drawn to the possible existence of national or regional regulations specifying limits for the level of EO residues present on or in medical devices.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 10012, Measurement management systems — Requirements for measurement processes and measuring equipment

ISO 10993-7, Biological evaluation of medical devices — Part 7: Ethylene oxide sterilization residuals

ISO 11138-1:2006, Sterilization of health care products — Biological indicators — Part 1: General requirements

ISO 11140-1, Sterilization of health care products — Chemical indicators — Part 1: General requirements

ISO 11737-1, Sterilization of medical devices — Microbiological methods — Part 1: Determination of a population of microorganisms on products