This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Guidance for logging of alarm system data

Abstract: Provides guidance to manufacturers of medical devices that generate alarm signals to meet the requirements for logging of alarm system data and support investigative activities performed by manufacturers and responsible organizations.

Keywords: medical device alarms, device logs, logs, data
AAMI Technical Information Report

A technical information report (TIR) is a publication of the Association for the Advancement of Medical Instrumentation (AAMI) Standards Board that addresses a particular aspect of medical technology.

Although the material presented in a TIR may need further evaluation by experts, releasing the information is valuable because the industry and the professions have an immediate need for it.

A TIR differs markedly from a standard or recommended practice, and readers should understand the differences between these documents.

Standards and recommended practices are subject to a formal process of committee approval, public review, and resolution of all comments. This process of consensus is supervised by the AAMI Standards Board and, in the case of American National Standards, the American National Standards Institute.

A TIR is not subject to the same formal approval process as a standard. However, a TIR is approved for distribution by a technical committee and the AAMI Standards Board.

Another difference is that, although both standards and TIRs are periodically reviewed, a standard must be acted on—reaffirmed, revised, or withdrawn—and the action formally approved usually every 5 years but at least every 10 years. For a TIR, AAMI consults with a technical committee about 5 years after the publication date (and periodically thereafter) for guidance on whether the document is still useful—that is, to check that the information is relevant or of historical value. If the information is not useful, the TIR is removed from circulation.

A TIR may be developed because it is more responsive to underlying safety or performance issues than a standard or recommended practice or because achieving consensus is extremely difficult or unlikely. Unlike a standard, a TIR permits the inclusion of differing viewpoints on technical issues.

CAUTION NOTICE: This AAMI TIR may be revised or withdrawn at any time. Because it addresses a rapidly evolving field or technology, readers are cautioned to ensure that they have also considered information that may be more recent than this document.

All standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Comments on this technical information report are invited and should be sent to AAMI, Attn: Standards Department, 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633.

Published by

AAMI
4301 N. Fairfax Drive, Suite 301
Arlington, VA 22203-1633

www.aami.org

© 2017 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

Publication, reproduction, photocopying, storage, or transmission, electronically or otherwise, of all or any part of this document without the prior written permission of the Association for the Advancement of Medical Instrumentation is strictly prohibited by law. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, contact AAMI at 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633. Phone: (703) 525-4890; Fax: (703) 276-0793.

Printed in the United States of America

ISBN 978-1-57020-677-1
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. AAMI maintains a current list of each International Standard that has been adopted by AAMI (and ANSI). Available on the AAMI website at the address below, this list gives the corresponding U.S. designation and level of equivalency to the International Standard.

www.aami.org/standards/glossary.pdf
Committee representation

Association for the Advancement of Medical Instrumentation

Medical Device Alarms Committee

This AAMI Technical Information Report was developed by the Medical Device Alarms Committee.

Committee approval of this document does not necessarily imply that all committee members voted for its approval. At the time this document was published, the committee had the following members.

Cochairs:
Dr. Frank Block
Dave Osborn

Members:
Pat Anglin-Regal, Massachusetts General Hospital
Frank Block
Steve Briol, Nonin Medical Inc
Conor Curtin, Fresenius Medical Care
Steve Dain, University of Western Ontario
Susan Dorsch
Jim Eberhart, Meritus Medical Center
Judy Edworthy, University of Plymouth School of Psychology
Shawn Forrest, FDA/CDRH
Daryle Gardner-Bonneau, Bonneau and Associates
Jonathan Gimbel, Regulatory and Quality Solutions LLC
Randy Good, Medtronic Inc Campus
Brian Gross, Philips
John Hedley-Whyte, Harvard University
David Hengl, Draeger Medical Systems Inc
Lan Herrington, Solera Wireless Inc
Mike Jaffe, Cardiorespiratory Consulting LLC
Douglas Kauffman, Davita Total Renal Care
Mike Kersch, Smith’s Medical
Joshua Kim, Hill-Rom Holdings
Sean Kirkwood, Stryker Instruments Division
Robert Koch, MECA - Medical Equipment Compliance Associates LLC
Todd Konieczny, Intertek
Ramya Krishnan, ECRI Institute
Colleen Lindell, Regions Hospital
Alan Lipshultz Health Care Technology Consulting LLC
Tim Morris, Medline Industries Inc
Shawn O’Connell, B Braun of America Inc
Dave Osborn, Philips
Brodie Pedersen
Raj Rajagopalan, Mindray DS USA Inc
Mark Rogers, Becton Dickinson & Company
Nicholas Sands, DuPont Protection Solutions
Walt Seagrave, Boston Scientific Corporation
Tom Shanks, MDVentures
Bob Steurer, Spacelabs Healthcare
Stephen Treacy, GE Healthcare
Rachel Vitoux, B Braun of America Inc
Colleen Wibbe, Baxter Healthcare Corporation
Daidi Zhong, Chongqing University

Alternates:
Reema Bhavnani, Baxter Healthcare Corporation
Tricia Bourie, Beth Israel Deaconess Medical Center
Matthew Burger, Regulatory and Quality Solutions LLC
Marty Crnkovich, Fresenius Medical Care
Scott Eaton, Mindray DS USA Inc
NOTE—Participation by federal agency representatives in the development of this document does not constitute endorsement by the federal government or any of its agencies.
Foreword

As used within the context of this document, "should" indicates that among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but is not prohibited. "May" is used to indicate that a course of action is permissible within the limits of the TIR. "Can" is used as a statement of possibility and capability. Finally, "must" is used only to describe "unavoidable" situations, including those mandated by government regulation.

Suggestions for improving this recommended practice are invited. Comments and suggested revisions should be sent to Technical Programs, AAMI, 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633.

NOTE—This foreword does not contain provisions of the AAMI TIR71, Guidance for logging of alarm system data (AAMI TIR71:2017), but it does provide important information about the development and intended use of the document.
Introduction

RESPONSIBLE ORGANIZATION ALARM SYSTEM LOG data has been demonstrated to be valuable for both MANUFACTURERS and RESPONSIBLE ORGANIZATIONS to support investigations related to ALARM CONDITIONS. The following are example use cases that can benefit from the information contained in the log data:

- investigate PATIENT adverse events;
- identify causes of PATIENT or OPERATOR HARM or potential HAZARDOUS SITUATIONS;
- assess PATIENT care protocol(s) adherence;
- identify failure modes;
- compile ALARM SYSTEM statistics;
- assess policy adherence; and
- conduct post-market surveillance.

In addition to the RESPONSIBLE ORGANIZATION ALARM SYSTEM LOG data, MEE and MES may provide OPERATOR ALARM SYSTEM LOG data (i.e. full disclosure and trends) that may assist in the investigation of specific ALARM CONDITIONS related to a PATIENT or PATIENTS. The scope of this document does not include the contents of OPERATOR ALARM SYSTEM LOG data.

MANUFACTURERS should consider ease of access as a design goal for RESPONSIBLE ORGANIZATIONS to access LOG files through a common service process. ALARM SYSTEM LOGS should be integrated into other LOGS in an MEE or MES.

Terms defined in Clause 3 of this document and in ANSI/AAMI ES60601-1 and ANSI/AAMI/IEC 60601-1-8 are noted in SMALL CAPITALS.
Guidance for logging of alarm system data

1 Scope

This document provides guidance to MANUFACTURERS of MEDICAL ELECTRICAL EQUIPMENT (MEE) and MEDICAL ELECTRICAL SYSTEMS (MES) that generate ALARM CONDITIONS and/or ALARM SIGNALS to meet the requirements for logging of ALARM SYSTEM data and support investigative activities performed by MANUFACTURERS and RESPONSIBLE ORGANIZATIONS.

This document is not intended to provide guidance for a product feature used by clinicians while caring for a PATIENT that stores physiological PATIENT data (waveform and numeric parameter data) or ALARM CONDITIONS. While this type of data is important, it is not considered RESPONSIBLE ORGANIZATION ALARM SYSTEM LOG data and is outside the scope of this document.

2 Normative references

ANSI/AAMI/IEC 60601-1-8, Medical electrical equipment – Part 1-8: General requirements for basic safety and essential performance – Collateral Standard; General requirements, tests and guidance for alarm systems in medical electrical equipment and medical electrical systems

3 Terms and definitions

For the purpose of this document, the terms and definitions given in ANSI/AAMI ES 60601-1 [1], ANSI/AAMI/IEC 60601-1-8, ANSI/AAMI/IEC 62366-1 [2] and the following apply.

3.1 ALARM SYSTEM LOG
LOG containing events related to the ALARM SYSTEM

3.2 MEDICAL EQUIPMENT ACCESS LOG
LOG containing events related to remote access to a MEE/MES

3.3 OPERATOR-SETTINGS LOG
LOG containing events related to changes to the OPERATOR SETTINGS of a MEE/MES

3.4 CONFIGURATION LOG
LOG containing events related to changes in the hardware or software configuration of a MEE/MES

3.5 DATA LOGGER
equipment that can be used to store LOG data

3.6 DATA STORE
data repository of a set of integrated objects; these objects are modelled using classes defined in database schemas

NOTE DATA STORE includes not only data repositories like databases; it is a more general concept that includes also flat files that can store data.

3.7 COMMUNICATOR
COM function of the ALARM SYSTEM that generates ALARM SIGNALS to notify an OPERATOR

NOTE 1 A COM can receive an OPERATOR response.

NOTE 2 An OPERATOR response is not limited to direct OPERATOR action.