ANSI/AAMI ST72:2019
Bacterial endotoxins—Test methods, routine monitoring, and alternatives to batch testing

PREVIEW COPY
This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Abstract: Specifies general criteria to be applied in the determination of bacterial endotoxins on or in medical devices, components, or raw materials employing bacterial endotoxins test (BET) methods using amebocyte lysate reagents from *Limulus polyphemus* or *Tachypleus tridentatus*. The document is not applicable to the evaluation of pyrogens other than bacterial endotoxins.

Keywords: Limulus amebocyte lysate, LAL, pyrogenic labeling, maximum valid dilution, MVD, RSE:CSE standardization, analyst qualification, product qualification, gel-clot technique, chromogenic technique, turbidimetric technique, medical device, batch testing, laboratory quality system, product family, set, sample frequency, kinetic assay
AAMI Standard

This Association for the Advancement of Medical Instrumentation (AAMI) standard implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI standard does not in any respect preclude anyone, whether they have approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. AAMI standards are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI standard may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Interested parties may obtain current information on all AAMI standards by calling or writing AAMI.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.
Contents

Committee representation .. iv
Introduction ... vii
 1 Scope ... 1
 2 Normative references ... 1
 3 Definitions .. 1
 4 Quality ... 3
 5 Determination of Product required to be non-pyrogenic due to intended use ... 4
 6 Product with non-pyrogenic label claim ... 5
 7 Selection of product units ... 6
 8 Selection of technique ... 6
 9 Method suitability ... 7
 10 Use of technique ... 10
 11 Alternatives to batch testing ... 13
Annex A (informative) Background on the bacterial endotoxins test .. 16
Annex B (informative) Guidance on test methods, routine monitoring, and alternatives to batch testing 21
Annex C (informative) Guidance on out of specification (OOS) and failure investigation 41
Annex D (informative) Guidance on in-process monitoring of manufacturing processes or component testing .. 44
Annex E (informative) Guidance on conducting a risk assessment to support alternatives to batch testing 46
Bibliography .. 53

Figures
Figure B.1—Key questions in evaluating the appropriateness and risk associated with alternatives to endotoxin batch testing .. 36
Figure B.2—Example of alternatives to endotoxin batch testing plan with component control/limited finished device testing ... 37
Figure B.3—Example of a risk assessment flow diagram that could be used to evaluate endotoxin contamination risks from incoming components and to determine any ongoing monitoring requirements 40
Figure C.1—Bacterial endotoxin OOS decision tree ... 43

Tables
Table 1—Preparation of solutions for method suitability test: Gel-clot technique ... 9
Table 2—Preparation of solutions for method suitability test: chromogenic and turbidimetric techniques 9
Table 3—Preparation of solutions for gel-clot limit test .. 12
Table 4—Preparation of solutions for gel-clot assay ... 12
Table B.1—Illustration of expectation for products labelled non-pyrogenic ... 23
Table B.2—Selection of number of samples .. 24
Table B.3—Selection of product units for testing ... 26
Table B.4—Calculation of endotoxin limit of extract solution (within a sterile barrier system) 28
Table B.5—Working Example of the Maximum Valid Dilution of Extract Solution .. 29
Table B.6—Working Example of Maximum Valid Dilution using Extraction Volume 30
Table B.7—Calculation of geometric mean—Worked example ... 31
Table E.1—Example of seventy rankings .. 47
Table E.2—Example of probability rankings ... 49
Table E.3—Example of overall risk rankings ... 50
Committee representation

Association for the Advancement of Medical Instrumentation

Microbiological Methods Working Group

This AAMI American National Standard (ANS) was developed and approved by the AAMI Microbiological Methods Working Group.

At the time this document was published, the AAMI Microbiological Methods Working Group had the following members:

Cochairs: Carolyn Braithwaite-Nelson
Amy Karren

Members: Anas Aljabo, CMC Sterilization Ltd
Christopher Anderson, Johnson & Johnson
Jennifer Asleson, Quality, Microbiology & Sterilization Services LLC
Erika Bawor, Insulet Corporation
Jennifer Berg, Sterilucent Inc
Michael Brady, Toxikon Corporation
Carolyn Braithwaite-Nelson, Philips
Trabue Bryans, BryKor LLC
Robb Calabro, AbbVie
Glenn Calvert, Tech Group North America dba West Pharmaceutical Services
Sarah Chamberlain, Avista Pharma Solutions Inc
Christina Cloutier, Case Medical Inc
Sean Colwell Belimed Inc
Lisa Cook, B Braun of America Inc
Gary Cranston, Consulting & Technical Services/PCS
Emily Craven, Mevex Corporation
Elaine Daniell, EDan-SA LLC
Douglas Davie, Sterilization Validation Services
April Doering, Cantel Inc
Michael Douthit, BSI Healthcare
Zachary Dukerich, Arthrex Inc
Plamena Entcheva-Dimitrov, Preferred Regulatory Consulting Inc
Niki Fidopiastis, NAMSA
Dan Floyd, DuPont Tyvek Medical and Pharmaceutical Protection
Clipper Giraud, Medtronic Inc
Elizabeth Gonzalez, FDA/CDRH
Chris Haas, Getinge USA
Douglas Hartrecht, Sterility Assurance LLC
Deborah Havlik, DA Havlik Consulting
Henri Hubert, Quality Processing Resource Group LLC
Timothy Hurtado, Memorial Hermann Healthcare System
Beth Jacques, STERIS Corporation| Healthcare
Amy Karren, WL Gore & Associates Inc
Karla Kluiber, Sanford Healthcare
Kaumudi Kulkarni, Healthmark Industries Company Inc
Christine Loshbaugh, Edwards Lifesciences
Jo-Ann Maltais, Maltais Consulting
Jeffrey Martin, Sterilization and Quality System Consulting LLC
Tom, McElroy, IUVO BioScience
David McGoldrick, Abbott Laboratories
Nicole McLees, 3M Health Care
Susan Messier, Ethide Laboratories
Russell Mills, GE Healthcare
Vanessa Molloy-Simard, Stryker Instruments Division
Peter Noverini, Baxter Healthcare Corporation
Gerry O'Dell, Gerry O'Dell Consulting
NOTE Participation by federal agency representatives in the development of this standard does not constitute endorsement by the federal government or any of its agencies.
Introduction

A pyrogen is any substance that can induce fever. Testing for pyrogens is required for release of many health care products. Pyrogens can be classified into two groups: microbial (e.g., bacteria, fungi, viruses) and non-microbial (e.g., drugs, device materials, steroids, plasma fractions). The predominant pyrogenic contaminants in the manufacturing of health care products are bacterial endotoxins, which are components of the cell walls of Gram-negative bacteria. Although Gram-positive bacteria, fungi, and viruses can be pyrogenic, they do so through different mechanisms (systemic effects) and to a lesser degree than Gram-negative bacteria. Only the Gram-negative bacterial endotoxin test (BET) using amebocyte lysate reagents from *Limulus polyphemus* or *Tachypleus tridentatus* will be covered in this document. Other endotoxin detection methodologies, such as monocyte activation and recombinant Factor C (rFc), are not included (see A.12).

Endotoxin is the high molecular weight lipopolysaccharide (LPS) component of the outer cell wall of Gram-negative bacteria, which can cause fever, meningitis, and a rapid fall in blood pressure if introduced into blood or tissues of the body. The outer cell wall components, which are composed primarily of proteins, phospholipids, and LPS, are constantly released into the environment. Because it is ubiquitous in nature, stable, and small enough to pass through conventional sterilizing filters, endotoxin contamination is difficult to prevent.

The non-pyrogenicity of a health care product can be achieved through the following:

a) manufacturing techniques that prevent or control endotoxin contamination,

b) depyrogenation by endotoxin inactivation (e.g., dry heat) or physical removal (e.g., rinsing, distillation, ultrafiltration).

The purpose of this document is to consolidate the requirements and guidance for testing for bacterial endotoxins. This includes product required to be non-pyrogenic due to intended use and non-pyrogenic labelling. Details are also provided on selection of product units, method suitability, use of techniques for routine testing, interpretation of test results, and alternatives to batch testing and risk assessment. Information on the following is provided in the annexes:

- the background/history of endotoxin testing (Annex A),
- guidance on endotoxin test methods, routine monitoring, and alternatives to batch testing (Annex B),
- guidance on out of specification test results and investigation (Annex C),
- guidance on in-process monitoring of manufacturing processes and component testing (Annex D), and
- guidance on conducting a risk assessment to support alternatives to batch testing (Annex E).

The annexes to this document are for information only.
PREVIEW COPY

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Bacterial endotoxins—Test methods, routine monitoring, and alternatives to batch testing

1 Scope

1.1 This document specifies general criteria to be applied in the determination of bacterial endotoxins on or in medical devices, components, or raw materials employing bacterial endotoxins test (BET) methods using amebocyte lysate reagents from *Limulus polyphemus* or *Tachypleus tridentatus*.

NOTE Although the scope of this standard is limited to medical devices, it also includes requirements and provides testing guidance that might be applicable to other health care products, such as, biologics, tissue-based products and combination products.

1.2 This document is not applicable to the evaluation of pyrogens other than bacterial endotoxins.

2 Normative references

The following documents contain provisions that, through reference in this text, constitute provisions of this guideline. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this guideline are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

The United States Pharmacopoeia (USP) <85>, current edition, United States Pharmacopeial Convention (USP), Rockville MD.

The United States Pharmacopoeia (USP) <161>, current edition, United States Pharmacopeial Convention (USP), Rockville MD.

3 Definitions

For the purpose of this document, the following definitions apply.

3.1 bacterial endotoxins test (BET): Assay for measuring bacterial endotoxins by combining a liquid test sample or test sample extract with *Tachypleus* or *Limulus* amebocyte lysate (TAL/LAL) reagent and measuring the resulting proportional reaction via visual, turbidimetric, or chromogenic techniques.

3.2 batch: Defined quantity of product intended or purported to be uniform in character and quality produced during a specified cycle of manufacture.

3.3 chromogenic technique: BET methodology that quantifies or detects endotoxins on the basis of a measured color-producing reaction proportional to the interaction of LAL and endotoxin.

3.4 control standard endotoxin (CSE): Endotoxin standard preparation whose potency has been standardized against the Reference Standard Endotoxin (RSE) for a specific batch of LAL.

3.5 depyrogenation: Validated process designed to remove or inactivate endotoxin.

3.6 direct contact: Term used for a device or device component that comes into physical contact with body tissue.

3.7 end product testing: Testing carried out on product samples that have completed the entire manufacturing process.

3.8 endotoxin or bacterial endotoxin: High molecular weight complex associated with the cell wall of Gram-negative bacteria that is pyrogenic in humans and specifically interacts with an endotoxin detection system.