ANSI/AAMI/ISO 23500-3: 2019
Preparation and quality management of fluids for haemodialysis and related therapies—Part 3: Water for haemodialysis and related therapies

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Preparation and quality management of fluids for haemodialysis and related therapies—Part 3: Water for haemodialysis and related therapies

Abstract: Specifies minimum requirements for water to be used in haemodialysis and related therapies. Includes water to be used in the preparation of concentrates, dialysis fluids for haemodialysis, haemodiafiltration and haemofiltration, and for the reprocessing of haemodialysers.

Keywords: chemical, compliance, colony, endotoxin, fluid, microbiological, pyrogen
AAMI Standard

This Association for the Advancement of Medical Instrumentation (AAMI) standard implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI standard does not in any respect preclude anyone, whether they have approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. AAMI standards are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI standard may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than 5 years from the date of publication. Interested parties may obtain current information on all AAMI documents by calling or writing AAMI.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.
Committee representation

Association for the Advancement of Medical Instrumentation
Renal Disease and Detoxification Committee

This standard was developed by the AAMI Renal Disease and Detoxification Committee. Committee approval of the standard does not necessarily imply that all committee members voted for its approval.

At the time this document was published, the AAMI Renal Disease and Detoxification Committee had the following members:

Cochairs: Jo-Ann Maltais, PhD
Denny Treu, BSME

Members:
Tom Allocco, US Renal Care
Matthew J. Arduino, DrPH, U.S. Centers for Disease Control and Prevention
Christian Bluchel, Temesek Polytechnic
Aaron Brown, Baxter Healthcare
Karla Byrne, Rockwell Medical
Danilo B. Concepcion, CBNT, CCHT-A, FNKF, St. Joseph Health System
Deborah Cote, MSN, RN, CNN, National Renal Administrators Association
Martin Crnkovich, BSEE, Fresenius Medical Care
Conor Curtin, Boston, MA
Pamela Elliott, MHA, BSN, Florence, SC
Gema Gonzalez, U.S. Food and Drug Administration/CDRH/ODE
Kalub Hahn, PhD, Cook Research
Joe Haney, AmeriWater
Peter F. Haywood, AWAK Technologies
Steven Hoffman, CBET, Children's Hospital of Pittsburgh
Robert Hootkins, MD, PhD, FASN, ESRD Consulting, Texas
Byron Jacobs, CBET, GE Healthcare
Ted A. Kasperek, Davita
Kristi Keller, Iredell Health System
Kendall Larson, Mar Cor Purification
Robert Levin, Renal Research Institute
Jo-Ann Maltais, PhD, Maltais Consulting
Duane Martz, AAEE/ MBA, B Braun of America
Klemens Meyer, MD, Tufts Medical Center
Thomas Meyer, Medtronic
Emily Michalsk, AAS, BS, Satellite Healthcare
Paul E. Miller, MD, Dialysis Clinic, Kidney Consultants of Louisiana
Arulkumar Natarajan, Doha, Qatar
Glenda Payne, RN, MS, CNN, American Nephrology Nurses Association
Toshiya Roberts, American Renal Associates
Joseph Sala, BSc Ed, Mount Sinai Medical Center
David Schmidt, Mayo Clinic
Chris Skarzynski, RN, McLeod Regional Medical Center
Vern S. Taaffe, Reprocessing Products Corporation
Denny Treu, BSME, NxStage Medical
Ashish Upadhyay, Boston University

Alternates:
Logan Cabral, AmeriWater
Bruce Fife, Reprocessing Products Corporation
Anthony Messana, National Renal Administrators Association
Mark Metzger, Fresenius Medical Care
Mark Pasmore, PhD, Baxter Healthcare
Martin Roberts, PhD, AWAK Technologies
Ronald Trammell, American Renal Associates
Michael Verguldi, Mar Cor Purification
NOTE—Participation by federal agency representatives in the development of this standard does not constitute endorsement by the federal government or any of its agencies.
Background of AAMI adoption of ISO 23500-3:2019

The International Organization for Standardization (ISO) published ISO 23500-3:2019, Preparation and quality management of fluids for haemodialysis and related therapies—Part 3: Water for haemodialysis and related therapies as a revision of ISO 13959:2014. The United States is one of the ISO members that took an active role in the development of this standard, which was developed by ISO Technical Committee 150, Subcommittee 2, Cardiovascular implants and extracorporeal systems, to fill a need for guidance on the user's responsibility for the dialysis fluid once the equipment used in its preparation has been delivered and installed. The 2019 ISO revision editorially aligns with the ISO dialysis fluid standards ISO 23500-1, ISO 23500-2, ISO 23500-4, and ISO 23500-5.

U.S. participation in this ISO TC is organized through the U.S. Technical Advisory Group for ISO/TC 150/SC 2, administered by the Association for the Advancement of Medical Instrumentation (AAMI). The U.S. TAG for ISO/TC 150/SC 2 supports the guidance provided in this document.

The concepts incorporated in this standard should not be considered inflexible or static. This standard, like any other, must be reviewed and updated periodically to assimilate progressive technological developments. To remain relevant, it must be modified as technological advances are made and as new data come to light.

NOTE Users of this standard are advised that this document is an AAMI identical adoption of an ISO document and that the following international conventions have been carried over to the AAMI publication:

— British English spelling (e.g. colour instead of color)
— Use of SI units (e.g. metres instead of feet, Celsius instead of Fahrenheit, etc.)
— Decimal comma instead of a decimal point (e.g. 1,000,15 instead of 1,000.15)

Suggestions for improving this standard are invited. Comments and suggested revisions should be sent to Standards Department, AAMI, 901 N. Glebe Road, Suite 300, Arlington, VA 22203.

NOTE Beginning with the ISO foreword on page vii, this American National Standard is identical to ISO 23500-3:2019.
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 150, Implants for surgery, Subcommittee SC 2, Cardiovascular implants and extracorporeal systems.

This first edition cancels and replaces ISO 13959:2014, which has been technically revised. The main changes compared to the previous edition are as follows:

— The document forms part of a revised and renumbered series dealing with the preparation and quality management of fluids for haemodialysis and related therapies. The series comprise ISO 23500-1 (previously ISO 23500), ISO 23500-2 (previously ISO 26722), ISO 23500-3 (previously ISO 13959), ISO 23500-4, (previously ISO 13958), and ISO 23500-5, (previously ISO 11663).

A list of all parts in the ISO 23500 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
Introduction

Assurance of adequate water quality is one of the most important aspects of ensuring a safe and effective delivery of haemodialysis, haemodiafiltration, or haemofiltration.

This document contains minimum requirements, chemical and microbiological, for the water to be used for preparation of dialysis fluids, concentrates, and for the reprocessing of haemodialysers and the necessary steps to ensure conformity with those requirements.

Haemodialysis and related therapies such as haemodiafiltration can expose the patient to more than 500 l of water per week across the semi-permeable membrane of the haemodialyser or haemodiafilter. Healthy individuals seldom have a weekly oral intake above 12 l. This over 40-fold increase in exposure requires control and regular surveillance of water quality to avoid excesses of known or suspected harmful substances. Since knowledge of potential injury from trace elements and contaminants of microbiological origin over long periods is still growing and techniques for treating drinking water are continuously developed, this document will evolve and be refined accordingly. The physiological effects attributable to the presence of organic contaminants in dialysis water are important areas for research, however, the effect of such contaminants on patients receiving regular dialysis treatment is largely unknown, consequently no threshold values for organic contaminants permitted in water used for the preparation of dialysis fluids, concentrates, and reprocessing of haemodialysers has been specified in this revised document.

Within this document, measurement techniques current at the time of publication have been cited. Other standard methods can be used, provided that such methods have been appropriately validated and are comparable to the cited methods.

The final dialysis fluid is produced from concentrates or salts manufactured, packaged, and labelled according to ISO 23500-4 mixed with water meeting the requirements of this document. Operation of water treatment equipment and haemodialysis systems, including on-going surveillance of the quality of water used to prepare dialysis fluids, and handling of concentrates and salts, are the responsibility of the haemodialysis facility and are addressed in ISO 23500-1. Haemodialysis professionals make choices about the various applications (haemodialysis, haemodiafiltration, haemofiltration) and should understand the risks of each and the requirements for safety for fluids used for each.

This document is directed towards manufacturers and providers of water treatment systems and also to haemodialysis facilities.

The rationale for the development of this document is given in informative Annex A.
Guidance for the preparation and quality management of fluids for haemodialysis and related therapies—Part 3: Water for haemodialysis and related therapies

1 Scope

This document specifies minimum requirements for water to be used in haemodialysis and related therapies.

This document includes water to be used in the preparation of concentrates, dialysis fluids for haemodialysis, haemodiafiltration and haemofiltration, and for the reprocessing of haemodialysers.

This document excludes the operation of water treatment equipment and the final mixing of treated water with concentrates to produce dialysis fluid. Those operations are the sole responsibility of dialysis professionals. This document does not apply to dialysis fluid regenerating systems.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 23500-1, Preparation and quality management of fluids for haemodialysis and related therapies—Part 1: General requirements

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 23500-1 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp


4 Requirements

4.1 Dialysis water quality requirements

The quality of the dialysis water, as specified in 4.2 and 4.3, shall be verified upon installation of a water treatment system. Regular surveillance of the dialysis water quality shall be carried out thereafter.

NOTE Throughout this document it is assumed that the water undergoing treatment is potable water and therefore meets the appropriate regulatory requirements for such water. If the water supply is derived from an alternate source such as a privately-owned borehole or well, contaminant levels cannot be as rigorously controlled.