It is most important that the objectives and potential uses of an AAMI product standard or recommended practice are clearly understood. The objectives of AAMI’s technical development program derive from AAMI’s overall mission: the advancement of medical instrumentation. Essential to such advancement are (1) a continued increase in the safe and effective application of current technologies to patient care, and (2) the encouragement of new technologies. It is AAMI's view that standards and recommended practices can contribute significantly to the advancement of medical instrumentation, provided that they are drafted with attention to these objectives and provided that arbitrary and restrictive uses are avoided.

A voluntary standard for a medical device recommends to the manufacturer the information that should be provided with or on the product, basic safety and performance criteria that should be considered in qualifying the device for clinical use, and the measurement techniques that can be used to determine whether the device conforms with the safety and performance criteria and/or to compare the performance characteristics of different products. Some standards emphasize the information that should be provided with the device, including performance characteristics, instructions for use, warnings and precautions, and other data considered important in ensuring the safe and effective use of the device in the clinical environment. Recommending the disclosure of performance characteristics often necessitates the development of specialized test methods to facilitate uniformity in reporting; reaching consensus on these tests can represent a considerable part of committee work. When a drafting committee determines that clinical concerns warrant the establishment of minimum safety and performance criteria, referee tests must be provided and the reasons for establishing the criteria must be documented in the rationale.

A recommended practice provides guidelines for the use, care, and/or processing of a medical device or system. A recommended practice does not address device performance per se, but rather procedures and practices that will help ensure that a device is used safely and effectively and that its performance will be maintained.

Although a device standard is primarily directed to the manufacturer, it may also be of value to the potential purchaser or user of the device as a frame of reference for device evaluation. Similarly, even though a recommended practice is usually oriented towards healthcare professionals, it may be useful to the manufacturer in better understanding the environment in which a medical device will be used. Also, some recommended practices, while not addressing device performance criteria, provide guidelines to industrial personnel on such subjects as sterilization processing, methods of collecting data to establish safety and efficacy, human engineering, and other processing or evaluation techniques; such guidelines may be useful to health care professionals in understanding industrial practices.

In determining whether an AAMI standard or recommended practice is relevant to the specific needs of a potential user of the document, several important concepts must be recognized:

All AAMI standards and recommended practices are voluntary (unless, of course, they are adopted by government regulatory or procurement authorities). The application of a standard or recommended practice is solely within the discretion and professional judgment of the user of the document.

Each AAMI standard or recommended practice reflects the collective expertise of a committee of health care professionals and industrial representatives, whose work has been reviewed nationally (and sometimes internationally). As such, the consensus recommendations embodied in a standard or recommended practice are intended to respond to clinical needs and, ultimately, to help ensure patient safety. A standard or recommended practice is limited, however, in the sense that it responds generally to perceived risks and conditions that may not always be relevant to specific situations. A standard or recommended practice is an important reference in responsible decision-making, but it should never replace responsible decision-making.

Despite periodic review and revision (at least once every five years), a standard or recommended practice is necessarily a static document applied to a dynamic technology. Therefore, a standards user must carefully review the reasons why the document was initially developed and the specific rationale for each of its provisions. This review will reveal whether the document remains relevant to the specific needs of the user.

Particular care should be taken in applying a product standard to existing devices and equipment, and in applying a recommended practice to current procedures and practices. While observed or potential risks with existing equipment typically form the basis for the safety and performance criteria defined in a standard, professional judgment must be used in applying these criteria to existing equipment. No single source of information will serve to identify a particular product as unsafe. A voluntary standard can be used as one resource, but the ultimate decision as to product safety and efficacy must take into account the specifics of its utilization and, of course, cost-benefit considerations. Similarly, a recommended practice should be analyzed in the context of the specific needs and resources of the individual institution or firm. Again, the rationale accompanying each AAMI standard and recommended practice is an excellent guide to the reasoning and data underlying its provision.

In summary, a standard or recommended practice is truly useful only when it is used in conjunction with other sources of information and policy guidance and in the context of professional experience and judgment.

INTERPRETATIONS OF AAMI STANDARDS AND RECOMMENDED PRACTICES

Requests for interpretations of AAMI standards and recommended practices must be made in writing, to the AAMI Vice President, Standards Policy and Programs. An official interpretation must be approved by the AAMI Standards Board. The interpretation will become official and representation of the Association only upon exhaustion of any appeals and upon publication of notice of interpretation in the "Standards Monitor" section of the AAMI News. The Association for the Advancement of Medical Instrumentation disclaims responsibility for any characterization or explanation of a standard or recommended practice which has not been developed and communicated in accordance with this procedure and which is not published, by appropriate notice, as an official interpretation in the AAMI News.
Cardiovascular implants — Cardiac valve prostheses — Part 3: Heart valve substitutes implanted by transcatheter techniques

Abstract: Outlines an approach for verifying/validating the design and manufacture of a transcatheter heart valve substitute through risk management. The selection of appropriate verification/validation tests and methods are to be derived from the risk assessment. The tests may include those to assess the physical, chemical, biological and mechanical properties of heart valve substitutes and of their materials and components. The tests can also include those for preclinical in vivo evaluation and clinical evaluation of the finished heart valve substitute.

Keywords: design, hydrodynamic, material, performance, preclinical, risk, verification, structural
AAMI Standard

This Association for the Advancement of Medical Instrumentation (AAMI) standard implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI standard does not in any respect preclude anyone, whether they have approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. AAMI standards are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI standard may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than 5 years from the date of publication. Interested parties may obtain current information on all AAMI standards by calling or writing AAMI, or by visiting the AAMI website at www.aami.org.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

PREVIEW COPY

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.

Published by

Association for the Advancement of Medical Instrumentation

4301 N. Fairfax Drive, Suite 301

Arlington, VA 22203-1633

www.aami.org

© 2013 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

This publication is subject to copyright claims of ISO, ANSI, and AAMI. No part of this publication may be reproduced or distributed in any form, including an electronic retrieval system, without the prior written permission of AAMI. All requests pertaining to this document should be submitted to AAMI. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, complete the reprint request form at www.aami.org or contact AAMI at 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633. Phone: +1-703-525-4890; Fax: +1-703-525-1067.

Printed in the United States of America

ISBN 1-57020-492-6
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary of equivalent standards</td>
<td>vi</td>
</tr>
<tr>
<td>Committee representation</td>
<td>vii</td>
</tr>
<tr>
<td>Background</td>
<td>viii</td>
</tr>
<tr>
<td>Foreword</td>
<td>ix</td>
</tr>
<tr>
<td>Introduction</td>
<td>x</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>3</td>
</tr>
<tr>
<td>4 Abbreviations</td>
<td>11</td>
</tr>
<tr>
<td>5 Fundamental requirements</td>
<td>11</td>
</tr>
<tr>
<td>6 Device description</td>
<td>11</td>
</tr>
<tr>
<td>6.1 Intended use</td>
<td>11</td>
</tr>
<tr>
<td>6.2 Design inputs</td>
<td>12</td>
</tr>
<tr>
<td>6.2.1 Operational specifications</td>
<td>13</td>
</tr>
<tr>
<td>6.2.2 Performance specifications</td>
<td>13</td>
</tr>
<tr>
<td>6.2.3 Implant procedure</td>
<td>15</td>
</tr>
<tr>
<td>6.2.4 Packaging, labeling and sterilization</td>
<td>15</td>
</tr>
<tr>
<td>6.3 Design outputs</td>
<td>15</td>
</tr>
<tr>
<td>6.4 Design transfer (manufacturing verification/validation)</td>
<td>15</td>
</tr>
<tr>
<td>6.5 Risk management</td>
<td>15</td>
</tr>
<tr>
<td>7 Design verification testing and analysis/design validation</td>
<td>16</td>
</tr>
<tr>
<td>7.1 General requirements</td>
<td>16</td>
</tr>
<tr>
<td>7.2 In vitro assessment</td>
<td>16</td>
</tr>
<tr>
<td>7.2.1 Test conditions, sample selection and reporting requirements</td>
<td>16</td>
</tr>
<tr>
<td>7.2.2 Material property assessment</td>
<td>17</td>
</tr>
<tr>
<td>7.2.3 Device hydrodynamic performance assessment</td>
<td>18</td>
</tr>
<tr>
<td>7.2.4 Structural performance assessment</td>
<td>20</td>
</tr>
<tr>
<td>7.2.5 Additional implant design evaluation requirements</td>
<td>22</td>
</tr>
<tr>
<td>7.2.6 Delivery system design evaluation requirements</td>
<td>23</td>
</tr>
<tr>
<td>7.2.7 Design-specific testing</td>
<td>24</td>
</tr>
<tr>
<td>7.2.8 Visibility</td>
<td>25</td>
</tr>
<tr>
<td>7.2.9 Simulated use</td>
<td>25</td>
</tr>
<tr>
<td>7.2.10 Human factors/usability assessment</td>
<td>25</td>
</tr>
<tr>
<td>7.3 Preclinical in vivo evaluation</td>
<td>25</td>
</tr>
<tr>
<td>7.3.1 Overall requirements</td>
<td>25</td>
</tr>
<tr>
<td>7.3.2 Methods</td>
<td>27</td>
</tr>
<tr>
<td>7.3.3 Test report</td>
<td>28</td>
</tr>
<tr>
<td>7.4 Clinical investigations</td>
<td>29</td>
</tr>
<tr>
<td>7.4.1 General</td>
<td>29</td>
</tr>
<tr>
<td>7.4.2 Statistical considerations</td>
<td>29</td>
</tr>
<tr>
<td>7.4.3 Distribution of subjects and investigators</td>
<td>30</td>
</tr>
<tr>
<td>7.4.4 Sample size</td>
<td>30</td>
</tr>
<tr>
<td>7.4.5 Entry criteria</td>
<td>30</td>
</tr>
<tr>
<td>7.4.6 Duration of the study</td>
<td>30</td>
</tr>
</tbody>
</table>
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. AAMI maintains a current list of each International Standard that has been adopted by AAMI (and ANSI). Available on the AAMI website at the address below, this list gives the corresponding U.S. designation and level of equivalency to the International Standard.

www.aami.org/standards/glossary.pdf
Committee representation

Association for the Advancement of Medical Instrumentation

Cardiac Valve Committee

The adoption of ISO 5840-3:2013 as an American National Standard was initiated by the AAMI Cardiac Valve Committee. The AAMI Cardiac Valve Committee also functions as a U.S. Technical Advisory Group to the relevant work in the International Organization for Sterilization (ISO). U.S. representatives from the AAMI Cardiac Valve Committee (U.S. Sub-TAG for ISO/TC 150/SC 2/WG 1, Cardiac valves) played an active part in developing the ISO standard.

At the time this document was published, the AAMI Cardiac Valve Committee had the following members:

Cochairs: Ann M. Graves
Ajit Yoganathan, PhD

Members:
Richard W. Bianco, University of Minnesota
Jeffrey Borer, MD, Weill Cornell Medical College of Cornell University
Lawrence Burr, MD, Vancouver, BC, Canada
Robert Chang, Sadra Medical
James C. Conti, PhD, Dynatek Labs
Robert W.M. Frater, MD, Bronxville, NY
Ann M. Graves St. Jude Medical
Stephen Hilbert, PhD MD, Children’s Mercy Hospital
Timothy A. Kelley, Medtronic, Inc.
Salvador Marquez, Edwards LifeSciences
David Mester, W.L. Gore & Associates
Ann M. Graves St. Jude Medical
Keith Morel, DEKRA
Stanton P. Nolan, MD, University of Virginia Health Sciences Center
Jonas Runquist, HLT Inc.
Hartzell Schaff, MD, Mayo Clinic
Julie Selstrom, Direct Flow Medical, Inc.
Sandy F. Stewart, PhD, Center for Devices and Radiological Health, U.S. Food and Drug Administration
Craig Weinberg, PhD, Biomedical Device Consultants & Laboratories
Julie Zaha, RN Southeastern Regional Medical Center
Ann M. Graves St. Jude Medical
Ajit Yoganathan, PhD, Georgia Institute of Technology

Alternates:
Lori Adels, BA PhD, Edwards LifeSciences
Fernando Aguel, Center for Devices and Radiological Health, U.S. Food and Drug Administration
Aaron Chalekian, St. Jude Medical Cardiovascular Division, Inc.
Carol E. Eberhart, Medtronic, Inc.
Helen Lavin, Sadra Medical
Elaine, Strope, PhD, Dynatek Labs
Steven L. Weinberg, PhD, Biomedical Device Consultants & Laboratories
David Williams, RN MSN, W.L. Gore & Associates

NOTE—Participation by federal agency representatives in the development of this standard does not constitute endorsement by the federal government or any of its agencies.
Background of ANSI/AAMI adoption of ISO 5840-3:2013

As indicated in the foreword to the main body of this document (page ix), the International Organization for Standardization (ISO) is a worldwide federation of national standards bodies. The United States is one of the ISO members that took an active role in the development of this standard, which was developed by ISO Technical Subcommittee 150/SC 2, Cardiovascular implants and extracorporeal systems, to fill a need for standardization in the field of transcatheter heart valve substitutes.

U.S. participation in this ISO SC is organized through the U.S. Technical Advisory Group for ISO/TC 150/SC 2, administered by the Association for the Advancement of Medical Instrumentation (AAMI). The U.S. TAG for ISO/TC 150/SC 2 supports the guidance provided in this document to select appropriate verification/validation tests and methods that are to be derived from risk assessment and define operational conditions and performance requirements where adequate scientific and/or clinical evidence exists for their justification.

AAMI and ANSI procedures require that standards be reviewed and, if necessary, revised every five years to reflect technological advances that may have occurred since publication.

AAMI (and ANSI) have adopted other ISO standards. See the Glossary of Equivalent Standards for a list of ISO standards adopted by AAMI which gives the corresponding U.S. designation and the level of equivalency with the ISO standard.

As used within the context of this document, “shall” indicates requirements strictly to be followed to conform to the standard. “Should” indicates that among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but is not prohibited. “May” is used to indicate that a course of action is permissible within the limits of the standard. “Can” is used as a statement of possibility and capability. Finally, “must” is used only to describe “unavoidable” situations, including those mandated by government regulation.

The concepts incorporated in this document should not be considered inflexible or static. This standard, like any other, must be reviewed and updated periodically to assimilate progressive technological developments. To remain relevant, it must be modified as technological advances are made and as new data come to light.

Suggestions for improving this document are invited. Comments and suggested revisions should be sent to Standards Department, AAMI, 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633.

NOTE—Beginning with the ISO foreword on page ix, this American National Standard is identical to ISO 5840-3:2013.
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 5840-3 was prepared by Technical Committee ISO/TC 150, Implants for surgery, Subcommittee SC 2, Cardiovascular implants and extracorporeal systems.

ISO 5840 consists of the following parts, under the general title Cardiovascular implants — Cardiac valve prostheses:

— Part 3: Heart valve substitutes implanted by minimally invasive techniques

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Introduction

No heart valve substitute is ideal. Therefore, a group of engineers, scientists and clinicians well aware of the problems associated with heart valve substitutes and their development has prepared this part of ISO 5840. In several areas, the provisions of this part of ISO 5840 have been deliberately left partially defined so as not to inhibit development and innovation. This part of ISO 5840 specifies types of tests, test methods and requirements for test apparatus. It requires documentation of test methods and results. This part of ISO 5840 deals with those areas that will ensure adequate mitigation of device-associated risks for patients and other users of the device, facilitate quality assurance, aid the cardiac surgeon and cardiologist in choosing a heart valve substitute, and ensure that the device will be presented in a convenient form. This part of ISO 5840 emphasizes the need to specify types of in vitro testing, preclinical in vivo and clinical evaluations as well as to report all in vitro, preclinical in vivo and clinical evaluations. It describes the labels and packaging of the device. Such a process involving in vitro, preclinical in vivo and clinical evaluations is intended to clarify the required procedures prior to market release and to enable prompt identification and management of any subsequent problems.

With regard to in vitro testing and reporting, apart from basic material testing for mechanical, physical, chemical and biocompatibility characteristics, this part of ISO 5840 also covers important hydrodynamic and durability characteristics of transcatheter heart valve substitutes and their delivery systems. This part of ISO 5840 does not specify exact test methods for hydrodynamic and durability testing but it offers guidelines for the test apparatus.

This part of ISO 5840 should be revised, updated and amended as knowledge and techniques in heart valve substitute technology improve.

This part of ISO 5840 is to be used in conjunction with ISO 5840:2005, which will be replaced by ISO 5840-1 in future.
Cardiovascular implants — Cardiac valve prostheses — Part 3: Heart valve substitutes implanted by transcatheter techniques

1 Scope

This part of ISO 5840 outlines an approach for verifying/validating the design and manufacture of a transcatheter heart valve substitute through risk management. The selection of appropriate verification/validation tests and methods are to be derived from the risk assessment. The tests may include those to assess the physical, chemical, biological and mechanical properties of heart valve substitutes and of their materials and components. The tests can also include those for preclinical in vivo evaluation and clinical evaluation of the finished heart valve substitute.

This part of ISO 5840 defines operational conditions and performance requirements for transcatheter heart valve substitutes where adequate scientific and/or clinical evidence exists for their justification.

This part of ISO 5840 is applicable to all devices intended for implantation in human hearts as a transcatheter heart valve substitute.

This part of ISO 5840 is applicable to both newly developed and modified transcatheter heart valve substitutes and to the accessory devices, packaging and labeling required for their implantation and for determining the appropriate size of heart valve substitute to be implanted.

This part of ISO 5840 excludes heart valve substitutes designed for implantation in artificial hearts or heart assist devices.

This part of ISO 5840 excludes valve-in-valve configurations and homografts.

This part of ISO 5840 does not specifically address non-traditional surgically implanted heart valve substitutes (e.g. sutureless). For these devices, the requirements of both this part of ISO 5840 and ISO 5840:2005 might be relevant and can be considered.

NOTE A rationale for the provisions of this part of ISO 5840 is given in Annex A.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 10993-1, Biological evaluation of medical devices — Part 1: Evaluation and testing within a risk management process

ISO 10993-2, Biological evaluation of medical devices — Part 2: Animal welfare requirements