
Medical electrical equipment—
Part 1: General requirements for basic safety and essential performance

(IEC 60601-1:2005, MOD).
Objectives and uses of AAMI standards and recommended practices

It is most important that the objectives and potential uses of an AAMI product standard or recommended practice are clearly understood. The objectives of AAMI’s technical development program derive from AAMI’s overall mission: the advancement of medical instrumentation. Essential to such advancement are (1) a continued increase in the safe and effective application of current technologies to patient care, and (2) the encouragement of new technologies. It is AAMI’s view that standards and recommended practices can contribute significantly to the advancement of medical instrumentation, provided that they are drafted with attention to these objectives and provided that arbitrary and restrictive uses are avoided.

A voluntary standard for a medical device recommends to the manufacturer the information that should be provided with or on the product, basic safety and performance criteria that should be considered in qualifying the device for clinical use, and the measurement techniques that can be used to determine whether the device conforms with the safety and performance criteria and/or to compare the performance characteristics of different products. Some standards emphasize the information that should be provided with the device, including performance characteristics, instructions for use, warnings and precautions, and other data considered important in ensuring the safety and effective use of the device in the clinical environment. Recommending the disclosure of specialized test methods to facilitate uniformity in reporting; reaching consensus on these tests can represent a considerable task of committee work. When a drafting committee determines that clinical concerns warrant the establishment of minimum safety and performance criteria, referee tests must be provided and the reasons for establishing the criteria must be documented in the rationale.

A recommended practice provides guidelines for the use, care, and/or processing of a medical device or system. A recommended practice does not address device performance per se, but rather procedures and practices that will help ensure that a device is used safely and effectively and that its performance will be maintained.

Although a device standard is primarily directed to the manufacturer, it may also be of value to the potential purchaser or user of the device as a frame of reference for device evaluation. Similarly, even though a recommended practice is usually oriented toward healthcare professionals, it may be useful to the manufacturer in better understanding the environment in which a medical device will be used. Also, some recommended practices, while not addressing device performance criteria, provide guidelines to industrial personnel on such subjects as sterilization processing, methods of collecting data to establish safety and efficacy, human engineering, and other processing or evaluation techniques; such guidelines may be useful to health care professionals in understanding industrial practices.

In determining whether an AAMI standard or recommended practice is relevant to the specific needs of a potential user of the document, several important concepts must be recognized:

All AAMI standards and recommended practices are voluntary (unless, of course, they are adopted by government regulatory or procurement authorities). The application of a standard or recommended practice is solely within the discretion and professional judgment of the user of the document.

Each AAMI standard or recommended practice reflects the collective expertise of a committee of health care professionals and industrial representatives, whose work has been reviewed nationally (and sometimes internationally). As such, the consensus recommendations embodied in a standard or recommended practice are intended to respond to clinical needs and, ultimately, to help ensure patient safety. A standard or recommended practice is limited, however, in the sense that it responds generally to perceived risks and conditions that may not always be relevant to specific situations. A standard or recommended practice is an important reference in responsible decision-making, but it should never replace responsible decision-making.

Despite periodic review and revision (at least once every five years), a standard or recommended practice is necessarily a static document applied to a dynamic technology. Therefore, a standards user must carefully review the reasons why the document was initially developed and the specific rationale for each of its provisions. This review will reveal whether the document remains relevant to the specific needs of the user.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.

INTERPRETATIONS OF AAMI STANDARDS AND RECOMMENDED PRACTICES

Requests for interpretations of AAMI standards and recommended practices must be made in writing, to the AAMI Vice President, Standards Policy and Programs. An official interpretation must be approved by letter ballot of the originating committee and subsequently reviewed and approved by the AAMI Standards Board. The interpretation will become official and representation of the Association only upon exhaustion of any appeals and publication of notice of interpretation in the "Standards Monitor" section of the AAMI News. The Association for the Advancement of Medical Instrumentation disclaims responsibility for any characterization or explanation of a standard or recommended practice which has not been developed and communicated in accordance with this procedure and which is not published by appropriate notice, as an official interpretation in the AAMI News.
American National Standard

(Consolidated text)

(IEC 60601-1:2005, MOD)

Medical electrical equipment –
Part 1: General requirements for basic safety and essential performance

Developed by
Association for the Advancement of Medical Instrumentation

Approved 9 February 2006 and reaffirmed 17 January 2012 by
Amendment A1 approved 21 August 2012 by
Amendment C1 approved 20 November 2009 and reaffirmed 17 January 2012 by
Amendment A2 approved 20 April 2010 and reaffirmed 17 January 2012 by
American National Standards Institute, Inc.

Abstract: Baseline of requirements for the basic safety and essential performance of all medical electrical equipment used by or under the supervision of qualified personnel in the general medical and patient environment. Also contains certain requirements for reliable operation to ensure safety. This standard can also be applied to equipment used for compensation or alleviation of disease, injury, or disability. This consolidates the original text of ANSI/AAMI ES60601-1:2005 and its amendments.

Keywords: electromedical equipment, electrical safety, essential performance
AAMI Standard

This Association for the Advancement of Medical Instrumentation (AAMI) standard implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI standard does not in any respect preclude anyone, whether they have approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. AAMI standards are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI standard may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Interested parties may obtain current information on all AAMI standards by calling or writing AAMI, or by visiting the AAMI website at www.aami.org.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.
CONTENTS

Glossary of equivalent standards .. xii
Committee representation .. xiii
Background of AAMI adoption of IEC 60601-1:2005 and Amendment 1 ... xiv
AAMI deviations from IEC 60601-1:2005 .. xv
FOREWORD .. xviii
INTRODUCTION TO THE AMENDMENT .. xxiii
INTRODUCTION ... xxi

1 Scope, object and related standards ... 1
 1.1 * Scope ... 1
 1.2 Object ... 1
 1.3 * Collateral standards ... 2
 1.4 * Particular standards ... 2

2 * Normative references .. 2

3 * Terminology and definitions .. 6

4 General requirements .. 27
 4.1 * Conditions for application to ME EQUIPMENT or ME SYSTEMS .. 27
 4.2 * RISK MANAGEMENT PROCESS for ME EQUIPMENT or ME SYSTEMS .. 27
 4.3 * ESSENTIAL PERFORMANCE .. 30
 4.4 * EXPECTED SERVICE LIFE .. 31
 4.5 * Equivalent safetyAlternative RISK CONTROL measures or test methods for ME EQUIPMENT or ME SYSTEMS .. 31
 4.6 * ME EQUIPMENT or ME SYSTEM parts that contact the PATIENT .. 31
 4.7 * SINGLE FAULT CONDITION for ME EQUIPMENT .. 31
 4.8 * Components of ME EQUIPMENT .. 32
 4.9 * Use of COMPONENTS WITH HIGH-INTEGRITY CHARACTERISTICS in ME EQUIPMENT 33
 4.10 * Power supply .. 34
 4.11 Power input ... 35

5 * General requirements for testing ME EQUIPMENT .. 36
 5.1 * TYPE TESTS ... 36
 5.2 * Number of samples .. 36
 5.3 Ambient temperature, humidity, atmospheric pressure ... 36
 5.4 Other conditions .. 36
 5.5 Supply voltages, type of current, nature of supply, frequency ... 37
 5.6 Repairs and modifications ... 37
 5.7 * Humidity preconditioning treatment ... 38
 5.8 Sequence of tests .. 38
 5.9 * Determination of APPLIED PARTS and ACCESSIBLE PARTS .. 38

6 * Classification of ME EQUIPMENT and ME SYSTEMS .. 42
 6.1 General .. 42
 6.2 * Protection against electric shock ... 42
 6.3 * Protection against harmful ingress of water or particulate matter .. 42
6.4 Method(s) of sterilization ... 42
6.5 Suitability for use in an OXYGEN RICH ENVIRONMENT ... 42
6.6 * Mode of operation ... 43

7 ME EQUIPMENT identification, marking and documents .. 43
7.1 General ... 43
7.2 Marking on the outside of ME EQUIPMENT or ME EQUIPMENT parts 44
7.3 Marking on the inside of ME EQUIPMENT or ME EQUIPMENT parts .. 49
7.4 Marking of controls and instruments .. 50
7.5 Safety signs .. 52
7.6 Symbols .. 53
7.7 Colors of the insulation of conductors ... 53
7.8 * Indicator lights and controls ... 54
7.9 ACCOMPANYING DOCUMENTS .. 54

8 * Protection against electrical HAZARDS from ME EQUIPMENT .. 61
8.1 Fundamental rule of protection against electric shock ... 61
8.2 Requirements related to power sources ... 62
8.3 Classification of APPLIED PARTS ... 62
8.4 Limitation of voltage, current or energy .. 63
8.5 Separation of parts ... 66
8.6 * Protective earthing, functional earthing and potential equalization of ME EQUIPMENT 74
8.7 LEAKAGE CURRENTS AND PATIENT AUXILIARY CURRENTS .. 77
8.8 Insulation ... 94
8.9 * CREEPAGE DISTANCES and AIR CLEARANCES .. 100
8.10 Components and wiring .. 116
8.11 MAINS PARTS, components and layout .. 118

9 * Protection against MECHANICAL HAZARDS of ME EQUIPMENT and ME SYSTEMS 124
9.1 MECHANICAL HAZARDS of ME EQUIPMENT ... 124
9.2 * MECHANICAL HAZARDS associated with moving parts .. 125
9.3 * MECHANICAL HAZARD associated with surfaces, corners and edges 131
9.4 * Instability HAZARDS ... 131
9.5 * Expelled parts HAZARD .. 136
9.6 Acoustic energy (including infra- and ultrasound) and vibration ... 136
9.7 * Pressure vessels and parts subject to pneumatic and hydraulic pressure 138
9.8 * MECHANICAL HAZARDS associated with support systems .. 140

10 * Protection against unwanted and excessive radiation HAZARDS .. 147
10.1 X-Radiation .. 147
10.2 Alpha, beta, gamma, neutron and other particle radiation ... 148
10.3 Microwave radiation ... 148
10.4 * Lasers and light emitting diodes (LEDs) ... 149
10.5 Other visible electromagnetic radiation .. 149
10.6 Infrared radiation .. 149
10.7 Ultraviolet radiation ... 149

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision. For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
11 * Protection against excessive temperatures and other HAZARDS ... 149
 11.1 * Excessive temperatures in ME EQUIPMENT ... 149
 11.2 * Fire prevention .. 154
 11.3 * Constructional requirements for fire ENCLOSURES of ME EQUIPMENT 159
 11.4 * ME EQUIPMENT and ME SYSTEMS intended for use with flammable anesthetics 161
 11.5 * ME EQUIPMENT and ME SYSTEMS intended for use in conjunction with flammable agents ... 161
 11.6 Overflow, spillage, leakage, ingress of water or particulate matter, cleaning, disinfection, sterilization and compatibility with substances used with the ME EQUIPMENT .. 161
 11.7 Biocompatibility of ME EQUIPMENT and ME SYSTEMS .. 161
 11.8 * Interruption of the power supply / SUPPLY MAINS to ME EQUIPMENT 161

12 * Accuracy of controls and instruments and protection against hazardous outputs 164
 12.1 Accuracy of controls and instruments ... 164
 12.2 USABILITY of ME EQUIPMENT .. 164
 12.3 ALARM SYSTEMS ... 164
 12.4 Protection against hazardous output .. 164

13 * HAZARDOUS SITUATIONS and fault conditions for ME EQUIPMENT 166
 13.1 Specific HAZARDOUS SITUATIONS ... 166
 13.2 SINGLE FAULT CONDITIONS ... 167

14 * PROGRAMMABLE ELECTRICAL MEDICAL SYSTEMS (PEMS) 173
 14.1 * General ... 173
 14.2 * Documentation ... 173
 14.3 * RISK MANAGEMENT plan ... 173
 14.4 * PEMS DEVELOPMENT LIFE-CYCLE ... 173
 14.5 * Problem resolution ... 174
 14.6 RISK MANAGEMENT PROCESS ... 174
 14.7 * Requirement specification ... 175
 14.8 * Architecture ... 175
 14.9 * Design and implementation ... 175
 14.10 * VERIFICATION .. 176
 14.11 * PEMS VALIDATION ... 176
 14.12 * Modification ... 176
 14.13 * Connection of PEMS by
 PEMS intended to be incorporated into an IT-NETWORK/DATA COUPLING to other equipment .. 177

15 Construction of ME EQUIPMENT .. 178
 15.1 * Arrangements of controls and indicators of ME EQUIPMENT 178
 15.2 * Serviceability .. 178
 15.3 Mechanical strength ... 178
 15.4 ME EQUIPMENT components and general assembly ... 182
 15.5 * MAINS SUPPLY TRANSFORMERS of ME EQUIPMENT and transformers providing separation in accordance with 8.5 .. 188

16 * ME SYSTEMS .. 192
 16.1 * General requirements for the ME SYSTEMS .. 192
16.2 * ACCOMPANYING DOCUMENTS of an ME SYSTEM .. 192
16.3 * Power supply .. 193
16.4 ENCLOSURES... 194
16.5 * SEPARATION DEVICES .. 194
16.6 * LEAKAGE CURRENTS .. 194
16.7 * Protection against MECHANICAL HAZARDS ... 195
16.8 Interruption of the power supply to parts of an ME SYSTEM .. 195
16.9 ME SYSTEM connections and wiring ... 196
17 * Electromagnetic compatibility of ME EQUIPMENT and ME SYSTEMS 198

Annexes
Annex A (informative) General guidance and rationale ... 199
Annex B (informative) Sequence of testing ... 315
Annex C (informative) Guide to marking and labeling requirements for ME EQUIPMENT and ME SYSTEMS .. 319
Annex D (informative) Symbols on marking ... 322
Annex E (informative) Examples of the connection of the measuring device (MD) for measurement of the PATIENT LEAKAGE CURRENT and PATIENT AUXILIARY CURRENT .. 331
Annex F (informative) Suitable measuring supply circuits ... 334
Annex G (informative) Protection against HAZARDS of ignition of flammable anesthetic mixtures .. 337
Annex H (informative) PEMS structure, PEMS DEVELOPMENT LIFE-CYCLE and documentation .. 352
Annex I (informative) ME SYSTEMS aspects ... 365
Annex J (informative) Survey of insulation paths .. 371
Annex K (informative) Simplified PATIENT LEAKAGE CURRENT diagrams .. 374
Annex L (normative) Insulated winding wires for use without interleaved insulation 377
Annex M (normative) Reduction of pollution degrees .. 380

Bibliography .. 381
INDEX OF ABBREVIATIONS AND ACRONYMS .. 385
INDEX ... 387

Figures
Figure 1 – Detachable mains connection ... 8
Figure 2 – Example of the defined terminals and conductors .. 9
Figure 3 – Example of a CLASS I ME EQUIPMENT .. 10
Figure 4 – Example of a metal-enclosed CLASS II ME EQUIPMENT ... 10
Figure 5 – Schematic flow chart for component qualification .. 34
Figure 6 – Standard test finger .. 40
Figure 7 – Test hook ... 41
Figure 8 – Test pin .. 64
Figure 9 – Application of test voltage to bridged PATIENT CONNECTIONS for DEFIBRILLATION-PROOF APPLIED PARTS .. 71
Figure 10 – Application of test voltage to individual PATIENT CONNECTIONS for DEFIBRILLATION-PROOF APPLIED PARTS .. 72
Figure 11 – Application of test voltage to test the delivered defibrillation energy .. 74
Figure 12 – Example of a measuring device and its frequency characteristics ... 79
Figure 13 – Measuring circuit for the EARTH LEAKAGE CURRENT of CLASS I ME equipment, with or without APPLIED PART .. 82
Figure 14 – Measuring circuit for the TOUCH CURRENT ... 83
Figure 15 – Measuring circuit for the PATIENT LEAKAGE CURRENT from the PATIENT CONNECTION to earth .. 84
Figure 16 – Measuring circuit for the PATIENT LEAKAGE CURRENT via the PATIENT CONNECTION(s) of an F-TYPE APPLIED PART to earth caused by an external voltage on the PATIENT CONNECTION(s) ... 85
Figure 17 – Measuring circuit for the PATIENT LEAKAGE CURRENT from PATIENT CONNECTION(s) to earth caused by an external voltage on a SIGNAL INPUT/OUTPUT PART .. 86
Figure 18 – Measuring circuit for the PATIENT LEAKAGE CURRENT from PATIENT CONNECTION(s) to earth caused by an external voltage on a metal ACCESSIBLE PART that is not PROTECTIVELY EARTHED .. 87
Figure 19 – Measuring circuit for the PATIENT AUXILIARY CURRENT .. 88
Figure 20 – Measuring circuit for the total PATIENT LEAKAGE CURRENT with all PATIENT CONNECTIONS of all APPLIED PARTS of the same type (TYPE B APPLIED PARTS, TYPE BF APPLIED PARTS or TYPE CF APPLIED PARTS) connected together .. 89
Figure 21 – Ball-pressure test apparatus ... 100
Figure 22 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 1 .. 113
Figure 23 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 2 .. 113
Figure 24 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 3 .. 113
Figure 25 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 4 .. 113
Figure 26 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 5 .. 114
Figure 27 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 6 .. 114
Figure 28 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 7 .. 114
Figure 29 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 8 .. 115
Figure 30 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 9 .. 115
Figure 31 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 10 ... 116
Figure 32 – Ratio between HYDRAULIC TEST PRESSURE and MAXIMUM PERMISSIBLE WORKING PRESSURE ... 139
Figure 33 – Human body test mass Body upper-carriage module .. 146
Figure 34 – Spark ignition test apparatus .. 155
Figure 35 – Maximum allowable current I as a function of the maximum allowable voltage U measured in a purely resistive circuit in an OXYGEN RICH ENVIRONMENT .. 156
Figure 36 – Maximum allowable voltage U as a function of the capacitance C measured in a capacitive circuit used in an OXYGEN RICH ENVIRONMENT .. 156
Figure 37 – Maximum allowable current I as a function of the inductance L measured in an inductive circuit in an OXYGEN RICH ENVIRONMENT .. 157
Figure 38 – Baffle ... 160
Figure 39 – Area of the bottom of an ENCLOSURE as specified in 11.3 b) 1) .. 161
Figure A.1 – Identification of ME EQUIPMENT, APPLIED PARTS and PATIENT CONNECTIONS in an ECG monitor .. 205

Figure A.2 – Example of the insulation of an F-TYPE APPLIED PART with the insulation incorporated in the ME EQUIPMENT ... 206

Figure A.3 – Identification of ME EQUIPMENT, APPLIED PARTS and PATIENT CONNECTIONS in a PATIENT monitor with invasive pressure monitoring facility .. 206

Figure A.4 – Identification of ME EQUIPMENT, APPLIED PARTS and PATIENT CONNECTIONS in a multifunction PATIENT monitor with invasive pressure monitoring facilities .. 207

Figure A.5 – Identification of APPLIED PARTS and PATIENT CONNECTIONS in an X-ray ME SYSTEM .. 208

Figure A.6 – Identification of ME EQUIPMENT, APPLIED PARTS and PATIENT CONNECTIONS in a transcutaneous electronic nerve stimulator (TENS) intended to be worn on the PATIENT’S belt and connected to electrodes applied to the PATIENT’S upper arm .. 209

Figure A.7 – Identification of ME EQUIPMENT or ME SYSTEM, APPLIED PARTS and PATIENT CONNECTIONS in a personal computer with an ECG module ... 210

Figure A.8 – Pictorial representation of the relationship of HAZARD, sequence of events, HAZARDOUS SITUATION and HARM .. 213

Figure A.9 – Example of PATIENT ENVIRONMENT .. 220

Figure A.10 – Floating circuit ... 239

Figure A.11 – Interruption of a power-carrying conductor between ME EQUIPMENT parts in separate ENCLOSURES .. 241

Figure A.12 – Identification of MEANS OF PATIENT PROTECTION and MEANS OF OPERATOR PROTECTION .. 245

Figure A.13 – Allowable protective earth impedance where the fault current is limited .. 252

Figure A.14 – Probability of ventricular fibrillation .. 258

Figure A.15 – Example of a measuring circuit for the PATIENT LEAKAGE CURRENT from a PATIENT CONNECTION to earth for ME EQUIPMENT with multiple PATIENT CONNECTIONS .. 263

Figure A.16 – Instability test conditions ... 275

Figure A.17 – Example of determining TENSILE SAFETY FACTOR using Table 21 282

Figure A.18 – Example of determining design and test loads ... 283

Figure A.19 – Example of human body mass distribution .. 283

Figure A.20 – Relationship of the terms used to describe equipment, ACCESSORIES or equipment parts ... 216

Figure A.21 – Example of ME EQUIPMENT having two different functions on one common APPLIED PART circuit .. 250

Figure A.22 – Maximum allowable temperature for surfaces and APPLIED PARTS at higher altitudes .. 288

Figure A.23 – Example of the needed MEANS OF OPERATOR PROTECTION between the terminals of an INTERNAL ELECTRICAL POWER SOURCE and a subsequent protective device 306

Figure E.1 – TYPE B APPLIED PART .. 331

Figure E.2 – TYPE BF APPLIED PART .. 331

Figure E.3 – TYPE CF APPLIED PART .. 332

Figure E.4 – PATIENT AUXILIARY CURRENT .. 332

Figure E.5 – Loading of the PATIENT CONNECTIONS if specified by the MANUFACTURER 333
Figure K.3 – ME EQUIPMENT with an APPLIED PART and a SIGNAL INPUT/OUTPUT PART 375
Figure K.4 – ME EQUIPMENT with a PATIENT CONNECTION of a TYPE B APPLIED PART that is not PROTECTIVELY EARTHED .. 375
Figure K.5 – ME EQUIPMENT with a PATIENT CONNECTION of a TYPE BF APPLIED PART that is not PROTECTIVELY EARTHED... 376

Tables
Table 1 – Units outside the SI units system that may be used on me equipment 52
Table 2 – Colors of indicator lights and their meaning for me equipment 54
Table 3 – * Allowable values of patient leakage currents and patient auxiliary currents under normal condition and single fault condition ... 80
Table 4 – * Allowable values of patient leakage currents under the special test conditions identified in 8.7.4.7 .. 81
Table 5 – Legends of symbols for Figure 9 to Figure 11, Figure 13 to Figure 20, Figure A.15, Annex E and Annex F ... 90
Table 6 – Test voltages for solid insulation forming a means of protection 97
Table 7 – Test voltages for means of operator protection .. 98
Table 8 – Multiplication factors for air clearances for altitudes up to 5,000 m 101
Table 9 – Material group classification ... 102
Table 10 – Mains transient voltage .. 103
Table 11 – Minimum creepage distances and air clearances between parts of opposite polarity of the mains part .. 104 Not used
Table 12 – Minimum creepage distances and air clearances providing means of patient protection .. 105
Table 13 – Minimum air clearances providing means of operator protection from the mains part ... 106
Table 14 – Additional air clearances for insulation in mains parts with peak working voltages exceeding the peak value of the nominal mains voltage a ... 107
Table 15 – Minimum air clearances for means of operator protection in secondary circuits . 108
Table 16 – Minimum Creepage distances providing means of operator protection 109
Table 17 – Nominal cross-sectional area of conductors of a power supply cord 120
Table 18 – Testing of cord anchorages ... 121
Table 19 – Mechanical hazards covered by this clause .. 125
Table 20 – Acceptable gaps .. 127
Table 21 – Determination of tensile safety factor .. 142
Table 22 – Allowable maximum temperatures of parts .. 150
Table 23 – Allowable maximum temperatures for me equipment parts that are likely to be touched .. 150
Table 24 – Allowable maximum temperatures for skin contact with me equipment applied parts .. 151
Table 25 – Acceptable perforation of the bottom of an enclosure 160
Table 26 – * Temperature limits of motor windings .. 170
Table 27 – Maximum motor winding steady-state temperature .. 172
Table 28 – Mechanical strength test applicability ... 179
Table 29 – Drop height ... 180
Table 30 – Test torques for rotating controls ... 186
Table 31 – Maximum allowable temperatures of transformer windings under overload and short-circuit conditions at 25 °C (± 5 °C) ambient temperature ... 188
Table 32 – Test current for transformers ... 189
Table 33 – Test conditions for overtravel end stop test ... 130
Table A.1 – Values of air clearance and creepage distance derived from Table 7 of IEC 61010-1:2001 and Table 12 .. 266
Table A.2 – Creepage distances to avoid failure due to tracking from IEC 60664-1 267
Table A.3 – Instability test conditions .. 275
Table A.4 – Allowable time exposure for level of acceleration .. 278
Table A.5 – Guidance on surface temperatures for me equipment that creates low temperatures (cools) for therapeutic purposes or as part of its operation 287
Table C.1 – Marking on the outside of me equipment, me systems or their parts 319
Table C.2 – Marking on the inside of me equipment, me systems or their parts 320
Table C.3 – Marking of controls and instruments ... 320
Table C.4 – Accompanying documents, general ... 320
Table C.5 – Accompanying documents, instructions for use .. 321
Table C.6 – Accompanying documents, technical description .. 321
Table D.1 – General symbols .. 323
Table D.2 – Safety signs .. 328
Table D.3 – General codes .. 330
Table G.1 – Gas-tightness of cord inlets .. 346
Table H.1 – Network/data coupling classification Not used .. 362
Table I.1 – Some examples of me systems for illustration ... 367
Table L.1– Mandrel diameter .. 378
Table L.2 – Oven temperature ... 378
Table M.1 – Reduction of the pollution degree of internal environment through the use of additional protection ... 380
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. AAMI maintains a current list of each International Standard that has been adopted by AAMI (and ANSI). Available on the AAMI website at the address below, this list gives the corresponding U.S. designation and level of equivalency to the International Standard.

www.aami.org/standards/glossary.pdf
Committee representation

Association for the Advancement of Medical Instrumentation

Electrical Safety Committee

This standard was developed by the AAMI Electrical Safety Committee. The adoption of Amendment 1 to IEC 60601-1 as an amendment to an existing national standard, ANSI/AAMI ES60601-1:2005 was initiated by the AAMI Electrical Safety Committee. U.S. representatives played an active role in developing the IEC standard. Committee approval of the standard does not necessarily imply that all committee members voted for its approval.

At the time this document was published, the AAMI Electrical Safety Committee had the following members:

Cochairs
Bernie Liebler, Advanced Medical Technology Association
Michael W. Schmidt, Strategic Device Compliance Services

Members
Stuart Albert, MBA CBET-E CHSP
Alan S. Berson, PhD, Bioresearch Funding Group
Steve Cantwell, Spacelabs Medical Inc.
Rebecca K. Crossley, CBET, Susquehanna Health System
Conor Curtin, Fresenius Medical Care Renal Therapies Group
Yadin David, EdD CCE PE HCSP, Biomedical Engineering Consultants LLC
Rich Eaton, Medical Imaging & Technology Alliance a Division of NEMA Medical Imaging & Technology Alliance (MITA) a Division of NEMA
Jeffrey L. Eggleston, MS PE, Covidien
Richard Gardner, GE Healthcare
Hamed Ghods, FDA/CDRH
David L. Green, CBET
Alex Grob, MECA - Medical Equipment Compliance Associates LLC
Dale Hallerberg, TUV Rheinland North America Inc.
Robert Alan Kemerling, PhD, Johnson & Johnson
Brian Killoran, Welch Allyn Inc.
Todd Konieczny, Intertek Testing Services
Bernie Liebler, Advanced Medical Technology Association
Alan Lipschultz, CCE PE CSP, HealthCare Technology Consulting LLC
Joseph P. Murnane, Jr., AAS BSEE, Underwriters Laboratories Inc.
David G. Osborn, Philips Electronics North America
Stefan M. Robert, Cyberonics Inc.
Steven Rus, Steris Corporation
Ed Russo, Dranetz
Michael W. Schmidt, Strategic Device Compliance Services
Donald Sherratt, Terumo BCT
James Shults, Hospira Worldwide Inc.
Richard E. Stein, St Jude Medical Inc.
James D. Stewardson,
Anna Varlese, Conmed Corp

Alternates
Joseph Basta, Spacelabs Medical Inc.
Kenneth E. Getman, Medical Imaging & Technology Alliance a Division of NEMANational Electrical Manufacturers Association
Mark Graber, GE Healthcare
Richard Markle, Philips Electronics North America
Jim Peterson, Fresenius Medical Care Renal Therapies Group Fresenius Medical Care
Sheari Rice, Steris Corporation
Harvey Rudolph, PhD, Underwriters Laboratories Inc.
Ted Yantsides, Conmed Corp
Jianchao Zeng, FDA/CDRH

NOTE—Participation by federal agency representatives in the development of this standard does not constitute endorsement by the federal government or any of its agencies.
Background of ANSI/AAMI adoption of IEC 60601-1:2005 and Amendment 1

As indicated in the foreword to the main body of this document (page viii), the International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising of all national electrotechnical committees. The United States is one of the IEC members that took an active role in the development of this standard, which was developed by the IEC Technical Subcommittee 62A, Common aspects of electrical equipment used in medical practice.

The U.S. adoption of IEC 60601-1:2005 was approved by the American National Standards Institute (ANSI) as a revision, with expanded scope, of AAMI ES1:1993, Safe current limits for electromedical apparatus, on 9 February 2006. The AAMI Electrical Safety Committee initiated the U.S. adoption of IEC 60601-1:2005. This edition of IEC 60601-1 has significant technical changes in the general requirements section (clause 4), electrical safety (clause 8), mechanical safety (clauses 9 and 15), and thermal/fire safety (clause 11).

The risk management philosophy introduced in clause 4.2 is the most significant change compared to ES1 and previous editions of IEC 60601-1. Manufacturers are now required to apply a risk management process in accordance with ISO 14971. For electrical safety under clause 8, this edition replaced the basic and double/reinforced insulations from the last edition with one or two "means of protection". The mechanical requirements contained in clauses 9 and 15 are far more extensive and detailed than in previous editions. Finally, clause 11 will also deal with flammability of materials used in the product in addition to requirements that address the temperature of components and surfaces that can be touched by users or patients.

AAMI encourages its committees to harmonize their work with International Standards to the extent possible. Upon review of the final draft Amendment 1 to International Standard IEC 60601-1, the AAMI ES, Electrical Safety Committee, decided to adopt it verbatim and received the necessary approval from the U.S. TAG administrator.

AAMI and ANSI procedures require that standards be reviewed every five years and, if necessary, revised to reflect technological advances that may have occurred since publication.

AAMI (and ANSI) have adopted other IEC and ISO standards. See the Glossary of Equivalent Standards for a list of IEC and ISO standards adopted by AAMI, which gives the corresponding U.S. designation and the level of equivalency with the IEC and ISO standard.

The concepts incorporated in this standard should not be considered inflexible or static. This standard, like any other, must be reviewed and updated periodically to assimilate progressive technological developments. To remain relevant, it must be modified as advances are made in technology and as new data come to light.

This standard reflects the conscientious efforts of concerned health care professionals and medical device manufacturers to develop a standard for those performance levels that can be reasonably achieved at this time.

Suggestions for improving this standard are invited. Comments and suggested revisions should be sent to Standards Department, AAMI, 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633.

NOTE-This background does not contain provisions of American National Standard, Medical electrical equipment – Part 1: General requirements for basic safety and essential performance, (ANSI/AAMI/IEC 60601-1), but it does provide important information about the development and intended use of the document.
AAMI deviations from IEC 60601-1:2005

4 General requirements

4.8 Components of ME EQUIPMENT

Replacement:

Because ANSI (American National Standards Institute) has published more component standards that are relevant to ME EQUIPMENT than either IEC or ISO, replace 4.8 b) with the following paragraph:

b) where there is no relevant IEC/ISO standard, the relevant ANSI standard shall be applied; if no relevant ANSI standard exists, the requirements of this standard shall be applied.

4.10.2 SUPPLY MAINS for ME EQUIPMENT and ME SYSTEMS

Replacement:

To reflect agreement with the NEC, replace the reference to "500 V" with "600 V" in the second and third dashes.

Addition:

To reflect agreement with the NEC, in the text of the second-to-last dash of this sub-clause, add "and the NEC" after the reference to "IEC 60364-4-41".

6 * Classification of ME EQUIPMENT and ME SYSTEMS

6.6 Mode of operation

Addition:

To reflect agreement with NFPA 70, X-Ray systems shall be classified as long time operation (> 5 min) or momentary operation (< 5 sec).

7 ME EQUIPMENT identification, marking and documents

7.2.11 Mode of operation

Addition:

To reflect agreement with NFPA 70, X-Ray systems shall be marked as long time operation or momentary operation.
New Subclause:

7.2.22 Colors of medical gas cylinders
To reflect agreement with NFPA 99: Cylinders containing medical gases and their connection points shall be colored in accordance with the requirements of NFPA 99.

8 Protection against electrical hazards from ME equipment

8.2 Requirements related to power sources
Addition:
To reflect agreement with the NEC, add the following requirement to this clause:
All FIXED ME EQUIPMENT and PERMANENTLY INSTALLED ME EQUIPMENT shall be CLASS I ME EQUIPMENT.

8.6.1 Application of requirements
Addition:
To reflect agreement with NFPA 99, the enclosure of X-ray ME EQUIPMENT operating over 600 Vac, 850 Vdc MAINS VOLTAGE, or containing voltages up to 50 V peak and enclosed in protectively earthed enclosure as well as connections to X-ray tubes and other high voltage components that include high voltage shielded cables shall be PROTECTIVELY EARTHED.

8.7.3 Allowable values
Deletion:
To reflect agreement with NFPA 99 which does not allow for allowance greater than the stated values, delete the second sentence and note to sub-clause 8.7.3 d) so that it reads:

 d) The allowable values of the EARTH LEAKAGE CURRENT are 5 mA in NORMAL CONDITION and 10 mA in SINGLE FAULT CONDITION.

8.11 MAINS PARTS, components and layout
Addition:

a) To reflect agreement with the NEC, add the following requirements to this clause:
Permanently connected ME EQUIPMENT shall have provision for the connection of one of the wiring systems that is in accordance with the NEC.

Exception: Fixed and stationary X-ray ME EQUIPMENT supplied from a branch circuit rated at 30 A or less, and ME EQUIPMENT that is not strictly portable but obviously is intended to be stationary, may be acceptable if provided with a length of attached hard service flexible cord - such as Type S, or the equivalent, for supply connection.

The installation of connecting cords between EQUIPMENT parts shall meet the requirements of the NEC, as applicable. Cable used as external interconnection between units shall be as follows:
1) If exposed to abuse, the cable shall be Type SJT, SJTO, SJO, ST, SO, STO, or equivalent flexible cord or similar multiple-conductor appliance-wiring material such as computer cable.

2) If not exposed to abuse, the cable shall be as indicated in item 1) above or shall be:
 i) Type SPT-2, SP-2, or SPE-2, or equivalent,
 ii) Type SVr, SVRO, SVE, or equivalent flexible cord or similar multiple-conductor appliance wiring material, or
 iii) An assembly of insulated wires each with a nominal insulation thickness of 0.8 mm (1/32 inch) or more, enclosed in acceptable insulating tubing having a nominal wall thickness of 0.8 mm (1/32 inch) or more.

Receptacles provided as part of ME EQUIPMENT or ME SYSTEMS for use in the patient care areas of pediatric wards, rooms, or areas shall be listed tamper resistant or shall employ a listed tamper resistant cover in accordance with the NEC.

b) For ME EQUIPMENT provided with NEMA configuration non-locking plug types 120 V/15 A, 125 V/20 A, 250 V/15 A, 250 V/20 A "Hospital Grade" mains plug shall be provided and the POWER SUPPLY CORD shall be marked.

8.11.3.2 Types

Addition:

To reflect agreement with the NEC, add the following requirement to this clause:
The flexible cord shall be of a type that is acceptable for the particular application. It shall be acceptable for use at a voltage not less than the rated voltage of the appliance and shall have an ampacity, as given in the NEC, not less than the current rating of the appliance.

8.11.3.3 Cross-sectional area of POWER SUPPLY CORDs

Addition:

To reflect agreement with NFPA 99, for X-Ray ME EQUIPMENT with an attachment plug, the current rating on a hospital grade plug should be 2X the maximum input current of the equipment.
INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEDICAL ELECTRICAL EQUIPMENT –

Part 1: General requirements for basic safety and essential performance

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be held responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9)Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The technical content is therefore identical to the base edition and its amendment and has been prepared for user convenience. Additions are displayed in blue and underlined. Deletions are displayed in red, with deletions being struck through.
International Standard IEC 60601-1 has been prepared by subcommittee 62A: Common aspects of electrical equipment used in medical practice, of IEC technical committee 62: Electrical equipment in medical practice.

This third edition cancels and replaces the second edition published in 1988, its Amendment 1 (1991) and Amendment 2 (1995), the second edition of IEC 60601-1-1 published in 2000 and the first edition of IEC 60601-1-4 published in 1996 and its Amendment 1 (1999). This edition constitutes a technical revision. This edition has been significantly restructured. Requirements in the electrical section have been further aligned with those for information technology equipment covered by IEC 60950-1 and a requirement for including a RISK MANAGEMENT PROCESS has been added. For an expanded description of this revision, see Annex A.3.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

In this standard the following print types are used:
- Requirements and definitions: in roman type.
- Test specifications: in italic type.
- Informative material appearing outside of tables, such as notes, examples and references: in smaller type. Normative text of tables is also in a smaller type.
- TERMS USED THROUGHOUT THIS STANDARD THAT HAVE BEEN DEFINED IN CLAUSE 3 AND ALSO GIVEN IN THE INDEX: IN SMALL CAPITALS.

In referring to the structure of this standard, the term,
- “clause” means one of the seventeen numbered divisions within the table of contents, inclusive of all subdivisions (e.g. Clause 7 includes subclauses 7.1, 7.2, etc.);
- “subclause” means a numbered subdivision of a clause (e.g. 7.1, 7.2 and 7.2.1 are all subclauses of Clause 7).

References to clauses within this standard are preceded by the term “Clause” followed by the clause number. References to subclauses within this standard are by number only.

In this standard, the conjunctive “or” is used as an “inclusive or” so a statement is true if any combination of the conditions is true.

The verbal forms used in this standard conform to usage described in Annex G of the ISO/IEC Directives, Part 2. For the purposes of this standard, the auxiliary verb:
1) “shall” means that compliance with a requirement or a test is mandatory for compliance with this standard;
2) “should” means that compliance with a requirement or a test is recommended but is not mandatory for compliance with this standard;
- “may” is used to describe a permissible way to achieve compliance with a requirement or test.

An asterisk (*) as the first character of a title or at the beginning of a paragraph or table title indicates that there is guidance or rationale related to that item in Annex A.
The committee has decided that the contents of the base publication and its amendments will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

NOTE
The attention of National Committees is drawn to the fact that equipment manufacturers and testing organizations may need a transitional period following publication of a new, amended or revised IEC or ISO publication in which to make products in accordance with the new requirements and to equip themselves for conducting new or revised tests. It is the recommendation of the committee that the content of this publication be adopted for mandatory implementation nationally not earlier than 3 years from the date of publication.

IMPORTANT – The “color inside” logo on the cover page of this publication indicates that it contains colors which are considered to be useful for the correct understanding of its contents. Users should therefore print this publication using a color printer.

PREVIEW COPY

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
INTRODUCTION

In 1976, IEC subcommittee 62A published the first edition of IEC/TR 60513, *Basic aspects of the safety philosophy for electrical equipment used in medical practice*. The first edition of IEC/TR 60513 provided the basis for developing:

- the first edition of IEC 60601-1 (the parent safety standard for MEDICAL ELECTRICAL EQUIPMENT);
- the IEC 60601-1-xx series of collateral standards for MEDICAL ELECTRICAL EQUIPMENT;
- the IEC 60601-2-xx series of particular standards for particular types of MEDICAL ELECTRICAL EQUIPMENT; and
- the IEC 60601-3-xx series of performance standards for particular types of MEDICAL ELECTRICAL EQUIPMENT.

Aware of the need and the urgency for a standard covering electrical equipment used in medical practice, the majority of National Committees voted in 1977 in favor of the first edition of IEC 60601-1, based on a draft that at the time represented a first approach to the problem. The extent of the scope, the complexity of the equipment concerned, and the specific nature of some of the protective measures and the corresponding tests for verifying them, required years of effort in order to prepare this first standard, which can now be said to have served as a universal reference since its publication.

However, the frequent application of the first edition revealed room for improvement. These improvements were all the more desirable in view of the considerable success that this standard has enjoyed since its publication.

The careful work of revision subsequently undertaken and continued over a number of years resulted in the publication of the second edition in 1988. This edition incorporated all the improvements that could be reasonably expected up to that time. Further developments remained under constant study. The second edition was amended in 1991 and then again in 1995.

The original IEC approach was to prepare separate BASIC SAFETY and performance standards for MEDICAL ELECTRICAL EQUIPMENT. This was a natural extension of the historical approach taken at the national and international level with other electrical equipment standards (e.g. those for domestic equipment), where BASIC SAFETY is regulated through mandatory standards but other performance specifications are regulated by market pressure. In this context, it has been said that, “The ability of an electric kettle to boil water is not critical to its safe use!”

It is now recognized that this is not the situation with many items of MEDICAL ELECTRICAL EQUIPMENT, and RESPONSIBLE ORGANIZATIONS have to depend on standards to ensure ESSENTIAL PERFORMANCE as well as BASIC SAFETY. Such areas include the accuracy with which the equipment controls the delivery of energy or therapeutic substances to the PATIENT, or processes and displays physiological data that will affect PATIENT management.

This recognition means that separating BASIC SAFETY and performance is somewhat inappropriate in addressing the HAZARDS that result from inadequate design of MEDICAL ELECTRICAL EQUIPMENT. Many particular standards in the IEC 60601-2-xx series address a range of ESSENTIAL PERFORMANCE requirements that cannot be directly evaluated by the RESPONSIBLE ORGANIZATION without applying such standards. (However, the current IEC 60601 series includes fewer requirements for ESSENTIAL PERFORMANCE than for BASIC SAFETY).

In order to achieve consistency in international standards, address present expectations in the health care community and align with developments in IEC 60601-2-xx, the second edition of IEC/TR 60513 includes two major new principles:

– the first change is that the concept of “SAFETY” has been broadened from the BASIC SAFETY considerations in the first and second editions of IEC 60601-1 to include ESSENTIAL PERFORMANCE matters, (e.g. the accuracy of physiological monitoring equipment). Application of this principle leads to the change of the title of this publication from “Medical electrical equipment, Part 1: General requirements for safety” in the second edition, to “Medical electrical equipment, Part 1: General requirements for basic safety and essential performance”;

– the second change is that, in specifying minimum safety requirements, provision is made for assessing the adequacy of the design PROCESS when this is the only practical method of assessing the safety of certain technologies such as programmable electronic systems. Application of this principle is one of the factors leading to introduction of a general requirement to carry out a RISK MANAGEMENT PROCESS. In parallel with the development of the third edition of IEC 60601-1, a joint project with ISO/TC 210 resulted in the publication of a general standard for RISK MANAGEMENT of medical devices. Compliance with this edition of IEC 60601-1 requires that the MANUFACTURER have in place a RISK MANAGEMENT PROCESS complying with parts of ISO 14971 (see 4.2).

This standard contains requirements concerning BASIC SAFETY and ESSENTIAL PERFORMANCE that are generally applicable to MEDICAL ELECTRICAL EQUIPMENT. For certain types of MEDICAL ELECTRICAL EQUIPMENT, these requirements are either supplemented or modified by the special requirements of a collateral or particular standard. Where particular standards exist, this standard should not be used alone.

Amendment 1 to this standard is intended to address:
– issues identified by National Committees and other interested parties since the publication of IEC 60601-1:2005;
– the way in which RISK MANAGEMENT has been introduced into IEC 60601-1:2005; and
– the way the concept of ESSENTIAL PERFORMANCE is used in IEC 60601-1:2005.

¹ Figures in square brackets refer to the Bibliography.
INTRODUCTION TO THE AMENDMENT

The third edition of IEC 60601-1 was published in 2005. At the time of publication, there were 94 National Committee comments on the 2nd CDV and the FDIS that were deferred to a future amendment/revision. Each of their deferred comments was captured in an Issue Sheet by the SC 62A secretariat. By the time of the Auckland meeting in April 2008, the Subcommittees had developed two Interpretation Sheets and the SC 62A secretariat has received an additional 15 issues from National Committees and other interested parties.

At the Auckland meeting, IEC/TC 62 approved a project to develop the 1st amendment to IEC 60601-1:2005 based on the issues outstanding at the time. The TC approved developing the 1st amendment with a view to addressing outstanding issues, including but not limited to:

- those listed in 62A/593/DC and 62A/602/INF;
- the way in which risk management has been introduced into IEC 60601-1:2005; and
- the way the concept of essential performance is used in IEC 60601-1:2005.

Since the Auckland meeting, the secretariat has received 73 additional issues from National Committees or other interested parties for a total of 182 Issues Sheets. This amendment is intended to address those issues.

PREVIEW COPY

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
MEDICAL ELECTRICAL EQUIPMENT –
Part 1: General requirements for basic safety
and essential performance

1 Scope, object and related standards

1.1 Scope

This International Standard applies to the BASIC SAFETY and ESSENTIAL PERFORMANCE of MEDICAL ELECTRICAL EQUIPMENT and MEDICAL ELECTRICAL SYSTEMS, hereafter referred to as ME EQUIPMENT and ME SYSTEMS.

If a clause or subclause is specifically intended to be applicable to ME EQUIPMENT only, or to ME SYSTEMS only, the title and content of that clause or subclause will say so. If that is not the case, the clause or subclause applies both to ME EQUIPMENT and to ME SYSTEMS, as relevant.

HAZARDS inherent in the intended physiological function of ME EQUIPMENT or ME SYSTEMS within the scope of this standard are not covered by specific requirements in this standard except in 7.2.13 and 8.4.1.

NOTE 1 See also 4.2.

This standard can also be applied to equipment used for compensation or alleviation of disease, injury or disability.

The IEC 60601 series does not apply to:

- in vitro diagnostic equipment that does not fall within the definition of ME EQUIPMENT, which is covered by the IEC 61010 series 2).
- implants does not apply to the implantable parts of active implantable medical devices covered by ISO 14708-1-3).
- implantable parts of active implantable medical devices covered by the ISO 14708 series [69], or
- medical gas pipeline systems covered by ISO 7396-1 [68].

NOTE 2 ISO 7396-1 applies the requirement of IEC 60601-1-8 to certain monitoring and ALARM SIGNALS.

1.2 Object

The object of this standard is to specify general requirements and to serve as the basis for particular standards.

2) IEC 61010 (all parts), Safety requirements for electrical equipment for measurement, control, and laboratory use
3) ISO 14708-1, Implants for surgery—Active implantable medical devices—Part 1: General requirements for safety, marking and for information to be provided by the manufacturer
1.3 * Collateral standards

In the IEC 60601 series, collateral standards specify general requirements for BASIC SAFETY and ESSENTIAL PERFORMANCE applicable to:

– a subgroup of ME EQUIPMENT (e.g. radiological equipment);
– a specific characteristic of all ME EQUIPMENT not fully addressed in this standard.

Applicable collateral standards become normative at the date of their publication and shall apply together with this standard.

NOTE 1 When evaluating compliance with IEC 60601-1, it is permissible to independently assess compliance with the collateral standards.

NOTE 2 When declaring compliance with IEC 60601-1, the declarer should specifically list the collateral standards that have been applied. This allows the reader of the declaration to understand which collateral standards were part of the evaluation.

NOTE 3 Members of Collateral standards in the IEC 60601 family are numbered IEC 60601-1-xx. The IEC maintains a register catalog of valid International Standards. Users of this standard should consult this register catalog at "http://webstore.iec.ch" to determine which collateral standards have been published.

If a collateral standard applies to ME EQUIPMENT for which a particular standard exists, then the particular standard takes priority over the collateral standard.

1.4 * Particular standards

In the IEC 60601 series, particular standards may modify, replace or delete requirements contained in this standard as appropriate for the particular ME EQUIPMENT under consideration, and may add other BASIC SAFETY and ESSENTIAL PERFORMANCE requirements.

NOTE Members of IEC and ISO maintain registers. Particular standards in the IEC 60601 family that are developed by IEC committees are numbered IEC 60601-2-xx. In addition, particular standards developed by joint projects between ISO and IEC can be numbered either IEC 80601-2-xx or ISO 80601-2-xx depending on which committee administered the project. IEC and ISO maintain catalogs of valid International Standards. Users of this standard should consult these registers catalogs at "http://webstore.iec.ch" and "http://www.iso.org/iso/store.htm" to determine which particular standards have been published.

A requirement of a particular standard takes priority over this standard.

2 * Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ATTENTION: Additional collateral standards of the IEC 60601 series, which are issued subsequent to publication of this standard, become normative at the date of their publication and shall be considered as being included among the normative references below. See 1.3.

NOTE Informative references are listed in the Bibliography on page 396.

IEC 60065:2001, Audio, video and similar electronic apparatus – Safety requirements
Amendment 1:2005
Amendment 2:2010

Amendment 1 (1993)