(Redline Format)
Medical device software—Software life cycle processes
Objectives and uses of AAMI standards and recommended practices

It is most important that the objectives and potential uses of an AAMI product standard or recommended practice are clearly understood. The objectives of AAMI’s technical development program derive from AAMI’s overall mission: the advancement of medical instrumentation. Essential to such advancement are (1) a continued increase in the safe and effective application of current technologies to patient care, and (2) the encouragement of new technologies. It is AAMI’s view that standards and recommended practices can contribute significantly to the advancement of medical instrumentation, provided that they are drafted with attention to these objectives and provided that arbitrary and restrictive uses are avoided.

A voluntary standard for a medical device recommends to the manufacturer the information that should be provided with or on the product, basic safety and performance criteria that should be considered in qualifying the device for clinical use, and the measurement techniques that can be used to determine whether the device conforms with the safety and performance criteria and/or to compare the performance characteristics of different products. Some standards emphasize the information that should be provided with the device, including performance characteristics, instructions for use, warnings and precautions, and other data considered important in ensuring the safe and effective use of the device in the clinical environment. Recommending the disclosure of performance characteristics often necessitates the development of specialized test methods to facilitate uniformity in reporting; reaching consensus on these tests can represent a considerable part of committee work. When a drafting committee determines that clinical concerns warrant the establishment of minimum safety and performance criteria, referee tests must be provided and the reasons for establishing the criteria must be documented in the rationale.

A recommended practice provides guidelines for the use, care, and/or processing of a medical device or system. A recommended practice does not address device performance per se but rather procedures and practices that will help ensure that a device is used safely and effectively and that its performance will be maintained.

Although a device standard is primarily directed to the manufacturer, it may also be of value to the potential purchaser or user of the device as a frame of reference for device evaluation. Similarly, even though a recommended practice is usually oriented towards healthcare professionals, it may be useful to the manufacturer in better understanding the environment in which a medical device will be used. Also, some recommended practices, while not addressing device performance criteria, provide guidelines to industrial personnel on such subjects as sterilization processing, methods of collecting data to establish safety and efficacy, human engineering, and other processing or evaluation techniques; such guidelines may be useful to health care professionals in understanding industrial practices.

In determining whether an AAMI standard or recommended practice is relevant to the specific needs of a potential user of the document, several important concepts must be recognized:

All AAMI standards and recommended practices are voluntary (unless, of course, they are adopted by government regulatory or procurement authorities). The application of a standard or recommended practice is solely within the discretion and professional judgment of the user of the document.

Each AAMI standard or recommended practice reflects the collective expertise of a committee of health care professionals and industrial representatives, whose work has been reviewed nationally (and sometimes internationally). As such, the consensus recommendations embodied in a standard or recommended practice are intended to respond to clinical needs and, ultimately, to help ensure patient safety. A standard or recommended practice is limited, however, in the sense that it responds generally to perceived risks and conditions that may not always be relevant to specific situations. A standard or recommended practice is an important reference in responsible decision-making, but it should never replace responsible decision-making.

Despite periodic review and revision (at least once every five years), a standard or recommended practice is necessarily a static document applied to a dynamic technology. Therefore, a standards user must carefully review the reasons why the document was initially developed and the specific rationale for each of its provisions. This review will reveal whether the document remains relevant to the specific needs of the user.

Particular care should be taken in applying a product standard to existing devices and equipment, and in applying a recommended practice to current procedures and practices. While observed or potential risks with existing equipment typically form the basis for the safety and performance criteria defined in a standard, professional judgment must be used in applying these criteria to existing equipment. No single source of information will serve to identify a particular product as "unsafe". A voluntary standard can be used as one resource, but the ultimate decision as to product safety and efficacy must take into account the specifics of its utilization and, of course, cost/benefit considerations. Similarly, a recommended practice should be analyzed in the context of the specific needs and resources of the individual institution or firm.

In summary, a standard or recommended practice is truly useful only when it is used in conjunction with other sources of information and policy guidance and in the context of professional experience and judgment.

INTERPRETATIONS OF AAMI STANDARDS AND RECOMMENDED PRACTICES

Requests for interpretations of AAMI standards and recommended practices must be made in writing, to the AAMI Vice President, Standards Policy and Programs. An official interpretation must be approved by letter ballot of the originating committee and subsequently reviewed and approved by the AAMI Standards Board. The interpretation will become official and representation of the Association only upon exhaustion of any appeals and upon publication of notice of interpretation in the Standards Monitor Online monthly newsletter. The Association for the Advancement of Medical Instrumentation disclaims responsibility for any characterization or explanation of a standard or recommended practice which has not been developed and communicated in accordance with this procedure and which is not published, by appropriate notice, as an official interpretation in the AAMI Standards Monitor Online.
Medical device software—Software life cycle processes

This standard applies to the development and maintenance of MEDICAL DEVICE SOFTWARE when software is itself a MEDICAL DEVICE or when software is an embedded or integral part of the final MEDICAL DEVICE. This standard describes PROCESSES that are intended to be applied to software which executes on a processor or which is executed by other software (for example an interpreter) which executes on a processor.

Keywords: medical device, software, life cycle
AAMI Standard

This Association for the Advancement of Medical Instrumentation (AAMI) standard implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI standard does not in any respect preclude anyone, whether they have approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. AAMI standards are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI standard may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Interested parties may obtain current information on all AAMI standards by calling or writing AAMI.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary of equivalent standards</td>
<td>iv</td>
</tr>
<tr>
<td>Committee representation</td>
<td>v</td>
</tr>
<tr>
<td>Background of ANSI/AAMI adoption of IEC 62304:2006</td>
<td>vii</td>
</tr>
<tr>
<td>Background of ANSI/AAMI adoption of IEC 62304:2006 AMD1</td>
<td>viii</td>
</tr>
<tr>
<td>Foreword</td>
<td>ix</td>
</tr>
<tr>
<td>Introduction</td>
<td>xi</td>
</tr>
<tr>
<td>Introduction to Amendment 1</td>
<td>xiv</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 * Normative references</td>
<td>2</td>
</tr>
<tr>
<td>3 * Terms and definitions</td>
<td>2</td>
</tr>
<tr>
<td>4 * General requirements</td>
<td>8</td>
</tr>
<tr>
<td>5 Software development PROCESS</td>
<td>11</td>
</tr>
<tr>
<td>6 Software maintenance PROCESS</td>
<td>21</td>
</tr>
<tr>
<td>7 * Software RISK MANAGEMENT PROCESS</td>
<td>23</td>
</tr>
<tr>
<td>8 * Software configuration management PROCESS</td>
<td>25</td>
</tr>
<tr>
<td>9 * Software problem resolution PROCESS</td>
<td>26</td>
</tr>
<tr>
<td>Annex A (informative) Rationale for the requirements of this standard</td>
<td>29</td>
</tr>
<tr>
<td>Annex B (informative) Guidance on the provisions of this standard</td>
<td>32</td>
</tr>
<tr>
<td>Annex C (informative) Relationship to other standards</td>
<td>49</td>
</tr>
<tr>
<td>Annex D (informative) Implementation</td>
<td>77</td>
</tr>
<tr>
<td>Bibliography</td>
<td>79</td>
</tr>
<tr>
<td>Index of defined terms</td>
<td>81</td>
</tr>
</tbody>
</table>

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Glossary of equivalent standards

International Standards or Technical Reports adopted in the United States may include normative references to other International Standards. AAMI maintains a current list of each International Standard that has been adopted by AAMI (and ANSI). Available on the AAMI website at the address below, this list gives the corresponding U.S. designation and level of equivalency to the International Standard.

www.aami.org/standards/glossary.pdf
Committee representation

Association for the Advancement of Medical Instrumentation

Software Work Group

At the time this document was published, the AAMI Software Work Group had the following members:

Cochair: Sherman Eagles
John Murray

Members:
Mark Adams, Steris Corporation
Michael Attili, Amaxo Inc
Michael Brendel, Spacelabs Healthcare
Frank Clay
Kimberly Colasanti, Welch Allyn Inc
Todd Cooper, Center for Medical Interoperability
Conor Curtin, Fresenius Medical Care
Richard DeLaCruz, Silver Lake Group Inc
Theresa Dennis, Sterigenics International
Harsh Dharwad, Hospira Worldwide Inc
Sherman Eagles, SoftwareCPR
Plamena Entcheva-Dimitrov, Regulatory Consultant
Christie Evans, Hill-Rom Holdings
Chris Flahive, Chris Flahive Associates
Rick Hampton, Premier Inc - Charlotte, NC
Ed Heierman, Abbott Laboratories
Jeremy Jensen, Boston Scientific Corporation
Clint Johnson, UC Davis Medical Ctr
Rob Johnson, Baxter Healthcare Corporation
Michelle Jump, Stryker Instruments Division
Jim Kaine; Steris Corporation
Patty Krantz-Zuppan, Medtronic Inc WHQ Campus
Alan Kusinitz, SoftwareCPR
Yimin Li, St Jude Medical Inc
Jared Mauldin, Integrated Medical Systems
Mary Beth McDonald, Mary Beth McDonald Consulting
Mulugeta Mideksa
Mark Miller, Covidiem
John Murray, FDA/CDRH
Andrew O’Keeffe, Draeger Medical Systems Inc
Geoff Pascoe
Joe Petruzzelli, Mindray DS USA Inc
Dewey Phan, Becton Dickinson & Company
Jon Platt, 3M Healthcare
Frank Pokrop, CareFusion
Bryan Pourciau, Cyberonics Inc
Inhel Rekik, University of Maryland Medical System
Victor Rodrigues, Cochlear Ltd
Albert Rodriguez, Cyberonics Inc
Miguel Rodriguez, Johnson & Johnson
Bill Roeca, CR Bard
Daniel Rubery, NxStage Medical Inc
Rick Schrenker, Massachusetts General Hospital
Ray Silkaitis, Amgen Inc

NOTE—Participation by federal agency representatives in the development of this recommended practice does not constitute endorsement by the federal government or any of its agencies.
Background of ANSI/AAMI adoption of IEC 62304:2006

The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The United States is one of the IEC members that took an active role in the development of this standard.

IEC 62304 is based on the American National Standard ANSI/AAMI SW68:2001 developed by AAMI. IEC 62304 was prepared by a Joint Working Group of Subcommittee (SC) 62A, Common aspects of electrical equipment used in medical practice, of IEC Technical Committee (TC) 62, Electrical equipment in medical practice, and ISO Technical Committee (TC) 210, Quality management and corresponding general aspects for medical devices. Table C.5 was prepared by ISO/IEC JTC 1/SC 7, Software and system engineering.

There are a few major differences between IEC 62304 and ANSI/AAMI SW68. The concept of software safety classification was added to IEC 62304. Three software safety classes are identified and manufacturers are required to assign a software safety class to each software system. Specific processes and tasks are required for each software safety class. A second difference is that there is no distinction in IEC 62304 between primary and supporting processes as there was in ANSI/AAMI SW68. And two processes that were included in ANSI/AAMI SW68 were removed from IEC 62304. These were the documentation process and the verification process. Some requirements that were in these processes were moved to other processes where they applied.

AAMI encourages its committees to harmonize their work with international documents as much as possible. The AAMI Medical Device Software Committee, together with the U.S. Technical Advisory Groups for IEC/SC 62A and ISO/TC 210, reviewed IEC 62304 to formulate the U.S. position and comments while the document was being developed. As the U.S. Technical Advisory Group for IEC/SC 62A, the lead committee, AdvaMed granted AAMI permission to consider adoption of IEC 62304, First Edition, as an American National Standard. Following AAMI procedures, the AAMI Medical Device Software Committee voted to adopt the IEC standard as written.

The concepts incorporated in this standard should not be considered inflexible or static. This standard, like any other, must be reviewed and updated periodically to assimilate progressive technological developments. To remain relevant, it must be modified as technological advances are made and as new data come to light.

Suggestions for improving this standard are invited. Comments and suggested revisions should be sent to Standards Department, AAMI, 4301 N. Fairfax Dr, Suite 301, Arlington, VA 22203-1633.
Background of ANSI/AAMI adoption of IEC 62304:2006 AMD1

As indicated in the foreword to the main body of this document (page x), the International Electrotechnical Commission (IEC) is a worldwide federation of national standards bodies. The United States is one of the IEC members that took an active role in the development of this standard, which was developed by IEC Technical Committee 62, Electrical equipment in medical practice, Subcommittee 62A, Common aspects of electrical equipment used in medical devices, to specify a process for a manufacturer to analyze, specify, develop and evaluate the usability of a medical device as it relates to safety.

U.S. participation in IEC/SC62A is organized through the U.S. Technical Advisory Group to IEC/SC62A, administered by the Association for the Advancement of Medical Instrumentation. Experts from the United States made a considerable contribution to this standard.

ANSI/AAMI/IEC 62304:2006 AMD1 was approved by the American National Standards Institute (ANSI) on 7 April 2016.

AAMI and ANSI procedures require that standards be reviewed every five years and, if necessary, revised to reflect technological advances that may have occurred since publication.

AAMI (and ANSI) have adopted other IEC standards. See the Glossary of Equivalent Standards for a list of IEC standards adopted by AAMI, which gives the corresponding U.S. designation and the level of equivalency with the ISO standard.

As used within the context of this document, “shall” indicates requirements strictly to be followed to conform to the recommended practice. “Should” indicates that among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but is not prohibited.

“May” is used to indicate that a course of action is permissible within the limits of the recommended practice. “Can” is used as a statement of possibility and capability. Finally, “must” is used only to describe “unavoidable” situations, including those mandated by government regulation.

The concepts incorporated in this standard should not be considered inflexible or static. This standard, like any other, must be reviewed and updated periodically to assimilate progressive technological developments. To remain relevant, it must be modified as technological advances are made and as new data come to light.

Suggestions for improving this standard are invited. Comments and suggested revisions should be sent to Standards Department, AAMI, 4301 N. Fairfax Dr, Suite 301, Arlington, VA 22203-1633.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Foreword

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

DISCLAIMER
This Consolidated version is not an official IEC Standard and has been prepared for user convenience. Only the current versions of the standard and its amendment(s) are to be considered the official documents.

In this Redline version, a vertical line in the margin shows where the technical content is modified by amendment 1. Additions are in green text, deletions are in strikethrough red text.

International Standard IEC 62304 has been prepared by a joint working group of subcommittee 62A: Common aspects of electrical equipment used in medical practice, of IEC technical committee 62: Electrical equipment in medical practice and ISO Technical Committee 210, Quality management and
corresponding general aspects for MEDICAL DEVICES. Table C.5 was prepared by ISO/IEC JTC 1/SC 7, Software and system engineering.

It is published as a dual logo standard.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

In this standard the following print types are used:

- requirements and definitions: in roman type;
- informative material appearing outside of tables, such as notes, examples and references: in smaller type. Normative text of tables is also in a smaller type;
- terms used throughout this standard that have been defined in Clause 3 and also given in the index: in small capitals.

An asterisk (*) as the first character of a title or at the beginning of a paragraph indicates that there is guidance related to that item in Annex B.

The committee has decided that the contents of the base publication and its amendment will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

NOTE The attention of National Committees is drawn to the fact that equipment MANUFACTURERS and testing organizations may need a transitional period following publication of a new, amended or revised IEC or ISO publication in which to make products in accordance with the new requirements and to equip themselves for conducting new or revised tests. It is the recommendation of the committee that the content of this publication be adopted for mandatory implementation within the period of 3 years from the date of publication.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
Introduction

Software is often an integral part of medical device technology. Establishing the safety and effectiveness of a medical device containing software requires knowledge of what the software is intended to do and demonstration that the use of the software fulfills those intentions without causing any unacceptable risks.

This standard provides a framework of life cycle processes with activities and tasks necessary for the safe design and maintenance of medical device software. This standard provides requirements for each life cycle process. Each life cycle process is further divided into consists of a set of activities, with most activities further divided into consisting of a set of tasks.

As a basic foundation it is assumed that medical device software is developed and maintained within a quality management system (see 4.1) and a risk management system (see 4.2). The risk management process is already very well addressed by the International Standard ISO 14971. Therefore IEC 62304 makes use of this advantage simply by a normative reference to ISO 14971. Some minor additional risk management requirements are needed for software, especially in the area of identification of contributing software factors related to hazards. These requirements are summarized and captured in Clause 7 as the software risk management process.

Whether software is a contributing factor to a hazardous situation is determined during the hazard identification activity of the risk management process. Hazards, hazardous situations that could be indirectly caused by software (for example, by providing misleading information that could cause inappropriate treatment to be administered) need to be considered when determining whether software is a contributing factor. The decision to use software to control risk is made during the risk control activity of the risk management process. The software risk management process required in this standard has to be embedded in the device risk management process according to ISO 14971.

The software development process consists of a number of activities. These activities are shown in Figure 1 and described in Clause 5. Because many incidents in the field are related to service or maintenance of medical device systems, including inappropriate software updates and upgrades, the software maintenance process is considered to be as important as the software development process. The software maintenance process is very similar to the software development process. It is shown in Figure 2 and described in Clause 6.
This standard identifies two additional processes considered essential for developing safe medical device software. They are the software configuration management process (Clause 8) and the software problem resolution process (Clause 9).
Amendment 1 updates the standard to add requirements to deal with LEGACY SOFTWARE, where the software design is prior to the existence of the current version, to assist manufacturers who must show compliance to the standard to meet European Directives. Software safety classification changes include clarification of requirements and updating of the software safety classification to include a risk-based approach.

This standard does not specify an organizational structure for the MANUFACTURER or which part of the organization is to perform which PROCESS, ACTIVITY, or TASK. This standard requires only that the PROCESS, ACTIVITY, or TASK be completed to establish compliance with this standard.

This standard does not prescribe the name, format, or explicit content of the documentation to be produced. This standard requires documentation of TASKS, but the decision of how to package this documentation is left to the user of the standard.

This standard does not prescribe a specific life cycle model. The users of this standard are responsible for selecting a life cycle model for the software project and for mapping the PROCESSES, ACTIVITIES, and TASKS in this standard onto that model.

Annex A provides rationale for the clauses of this standard. Annex B provides guidance on the provisions of this standard.

For the purposes of this standard:
- “shall” means that compliance with a requirement is mandatory for compliance with this standard;
- “should” means that compliance with a requirement is recommended but is not mandatory for compliance with this standard;
- “may” is used to describe a permissible way to achieve compliance with a requirement;
- “establish” means to define, document, and implement; and
- where this standard uses the term “as appropriate” in conjunction with a required PROCESS, ACTIVITY, TASK or output, the intention is that the MANUFACTURER shall use the PROCESS, ACTIVITY, TASK or output unless the MANUFACTURER can document a justification for not so doing.
INTRODUCTION to Amendment 1

The first edition of IEC 62304 was published in 2006. This amendment is intended to add requirements to deal with LEGACY SOFTWARE, where the software design is prior to the existence of the current version, to assist manufacturers who must show compliance to the standard to meet European Directives. Software safety classification changes needed for this amendment include clarification of requirements and updating of the software safety classification to include a risk-based approach. Work is continuing in parallel to develop the second edition of IEC 62304.
Medical device software—Software life cycle processes

1 Scope

1.1 * Purpose

This standard defines the life cycle requirements for MEDICAL DEVICE SOFTWARE. The set of PROCESSES, ACTIVITIES, and TASKS described in this standard establishes a common framework for MEDICAL DEVICE SOFTWARE life cycle PROCESSES.

1.2 * Field of application

This standard applies to the development and maintenance of MEDICAL DEVICE SOFTWARE when software is itself a MEDICAL DEVICE or when software is an embedded or integral part of the final MEDICAL DEVICE.

NOTE 1 This standard can be used in the development and maintenance of software that is itself a medical device. However, additional development activities are needed at the system level before this type of software can be placed into service. These system activities are not covered by this standard, but can be found in IEC 82304-1 [22].

This standard describes PROCESSES that are intended to be applied to software which executes on a processor or which is executed by other software (for example an interpreter) which executes on a processor.

NOTE 2 If a medical device incorporates embedded software intended to be executed on a processor, the requirements of this standard apply to the software, including the requirements concerning software of unknown provenance (see 8.1.2).

NOTE 3 Validation and other development activities are needed at the system level before the software and medical device can be placed into service. These system activities are not covered by this standard, but can be found in related product standards (e.g., IEC 60601-1, IEC 82304-1, etc.).

1 In preparation.