Objective and uses of AAMI standards and recommended practices

It is most important that the objectives and potential uses of an AAMI product standard or recommended practice are clearly understood. The objectives of AAMI's technical development program derive from AAMI's overall mission: the advancement of medical instrumentation. Essential to such advancement are (1) a continued increase in the safe and effective application of current technologies to patient care, and (2) the encouragement of new technologies. It is AAMI's view that standards and recommended practices can contribute significantly to the advancement of medical instrumentation, provided that they are drafted with attention to these objectives and provided that arbitrary and restrictive uses are avoided.

A voluntary standard for a medical device recommends to the manufacturer the information that should be provided with or on the product, basic safety and performance criteria that should be considered in qualifying the device for clinical use, and the measurement techniques that can be used to determine whether the device conforms with the safety and performance criteria and/or to compare the performance characteristics of different products. Some standards emphasize the information that should be provided with the device, including performance characteristics, instructions for use, warnings and precautions, and other data considered important in ensuring the safe and effective use of the device in the clinical environment. Recommending the disclosure of performance characteristics often necessitates the development of specialized test methods to facilitate uniformity in reporting; reaching consensus on these tests can represent a considerable part of committee work. When a drafting committee determines that clinical concerns warrant the establishment of minimum safety and performance criteria, refereed tests must be provided and the reasons for establishing the criteria must be documented in the rationale.

A recommended practice provides guidelines for the use, care, and/or processing of a medical device or system. A recommended practice does not address device performance per se, but rather procedures and practices that will help ensure that a device is used safely and effectively and that its performance will be maintained.

Although a device standard is primarily directed to the manufacturer, it may also be of value to the potential purchaser or user of the device as a frame of reference for device evaluation. Similarly, even though a recommended practice is usually oriented towards healthcare professionals, it may be useful to the manufacturer in better understanding the environment in which a medical device will be used. Also, some recommended practices, while not addressing device performance criteria, provide guidelines to industrial personnel on such subjects as sterilization processing, methods of collecting data to establish safety and efficacy, human engineering, and other processing or evaluation techniques; such guidelines may be useful to health care professionals in understanding industrial practices.

In determining whether an AAMI standard or recommended practice is relevant to the specific needs of a potential user of the document, several important concepts must be recognized.

All AAMI standards and recommended practices are voluntary (unless, of course, they are adopted by government regulatory or procurement authorities). The application of a standard or recommended practice is solely within the discretion and professional judgment of the user of the document.

Each AAMI standard or recommended practice reflects the collective expertise of a committee of health care professionals and industrial representatives, whose work has been reviewed nationally (and sometimes internationally). As such, the consensus recommendations embodied in a standard or recommended practice are intended to respond to clinical needs and, ultimately, to help ensure patient safety. A standard or recommended practice is limited, however, in the sense that it responds generally to perceived risks and conditions that may not always be relevant to specific situations. A standard or recommended practice is an important reference in responsible decision-making, but it should never replace responsible decision-making.

Despite periodic review and revision (at least once every five years), a standard or recommended practice is necessarily a static document applied to a dynamic technology. Therefore, a standards user must carefully review the reasons why the document was initially developed and the specific rationale for each of its provisions. This review will reveal whether the document remains relevant to the specific needs of the user.

Particular care should be taken in applying a product standard to existing devices and equipment, and in applying a recommended practice to current procedures and practices. While observed or potential risks with existing equipment typically form the basis for the safety and performance criteria defined in a standard, professional judgment must be used in applying these criteria to existing equipment. No single source of information will serve to identify a particular product as "unsafe". A voluntary standard can be used as one resource, but the ultimate decision as to product safety and efficacy must take into account the specifics of its utilization and, of course, cost-benefit considerations. Similarly, a recommended practice should be analyzed in the context of the specific needs and resources of the individual institution or firm. Again, the rationale accompanying each AAMI standard and recommended practice is an excellent guide to the reasoning and data underlying its provisions.

In summary, a standard or recommended practice is truly useful only when it is used in conjunction with other sources of information and policy guidance and in the context of professional experience and judgment.

Interpretations of AAMI Standards and Recommended Practices

Requests for interpretations of AAMI standards and recommended practices must be made in writing, to the AAMI Vice President, Standards Policy and Programs. An official interpretation must be approved by letter ballot of the originating committee and subsequently reviewed and approved by the AAMI Standards Board. The interpretation will become official and representation of the Association only upon exhaustion of any appeals and upon publication of notice of interpretation in the "Standards Monitor" section of the AAMI News. The Association for the Advancement of Medical Instrumentation disclaims responsibility for any characterization or explanation of a standard or recommended practice which has not been developed and communicated in accordance with this procedure and which is not published, by appropriate notice, as an official interpretation in the AAMI News.
Small-bore connectors for liquids and gases in healthcare applications — Part 6: Connectors for neuraxial applications

PREVIEW COPY

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-977-249-8226 or visit www.aami.org.

Approved 18 December 2015 by Association for the Advancement of Medical Instrumentation

Approved 15 March 2016 by American National Standards Institute

Abstract: Specifies requirements for SMALL-BORE CONNECTORS intended to be used for CONNECTIONS in neuraxial APPLICATIONS. Neuraxial APPLICATIONS involve the use of MEDICAL DEVICES intended to administer medications to neuraxial sites, wound infiltration anaesthesia delivery, and other regional anaesthesia procedures or to monitor or remove cerebro-spinal fluid for therapeutic or diagnostic purposes.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary of equivalent standards</td>
<td>iv</td>
</tr>
<tr>
<td>Committee representation</td>
<td>v</td>
</tr>
<tr>
<td>Background of ANSI/AAMI/ISO 80369-6:2016</td>
<td>viii</td>
</tr>
<tr>
<td>Foreword</td>
<td>viii</td>
</tr>
<tr>
<td>Introduction</td>
<td>ix</td>
</tr>
<tr>
<td>1 * Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>2</td>
</tr>
<tr>
<td>4 General requirements</td>
<td>3</td>
</tr>
<tr>
<td>4.1 General requirements for the neuraxial APPLICATION</td>
<td>3</td>
</tr>
<tr>
<td>4.2 Material used for SMALL-BORE CONNECTORS</td>
<td>4</td>
</tr>
<tr>
<td>4.3 * Type tests</td>
<td>4</td>
</tr>
<tr>
<td>5 Dimensional requirements for neuraxial SMALL-BORE CONNECTORS</td>
<td>4</td>
</tr>
<tr>
<td>6 Performance requirements</td>
<td>4</td>
</tr>
<tr>
<td>6.1 Fluid leakage</td>
<td>4</td>
</tr>
<tr>
<td>6.1.1 Fluid leakage requirement</td>
<td>4</td>
</tr>
<tr>
<td>6.1.2 Leakage by pressure decay</td>
<td>4</td>
</tr>
<tr>
<td>6.1.3 Positive pressure liquid leakage</td>
<td>4</td>
</tr>
<tr>
<td>6.2 Subatmospheric pressure air leakage</td>
<td>4</td>
</tr>
<tr>
<td>6.3 Stress cracking</td>
<td>5</td>
</tr>
<tr>
<td>6.4 Resistance to separation from axial load</td>
<td>5</td>
</tr>
<tr>
<td>6.5 Resistance to separation from unscrewing</td>
<td>5</td>
</tr>
<tr>
<td>6.6 Resistance to overriding</td>
<td>5</td>
</tr>
<tr>
<td>Annex A (informative) Rationale and guidance</td>
<td>6</td>
</tr>
<tr>
<td>Annex B (normative) SMALL-BORE CONNECTORS for neuraxial APPLICATION</td>
<td>10</td>
</tr>
<tr>
<td>Annex C (normative) Reference CONNECTORS for testing SMALL-BORE CONNECTORS for neuraxial APPLICATION</td>
<td>19</td>
</tr>
<tr>
<td>Annex D (informative) Assessment of MEDICAL DEVICES and their attributes with CONNECTIONS within this APPLICATION</td>
<td>26</td>
</tr>
<tr>
<td>Annex E (informative) Summary of the usability requirements for SMALL-BORE CONNECTORS for neuraxial APPLICATION</td>
<td>28</td>
</tr>
<tr>
<td>Annex F (informative) Summary of SMALL-BORE CONNECTOR design requirements for neuraxial APPLICATION</td>
<td>31</td>
</tr>
<tr>
<td>Annex G (informative) Summary of assessment of the design of the SMALL BORE CONNECTORS for neuraxial APPLICATION</td>
<td>35</td>
</tr>
<tr>
<td>Annex H (normative) Mechanical tests for verifying NON-INTERCONNECTABLE characteristics</td>
<td>39</td>
</tr>
<tr>
<td>Annex I (informative) Reference to the essential principles</td>
<td>42</td>
</tr>
<tr>
<td>Annex J (informative) Terminology — alphabetized index of defined terms</td>
<td>44</td>
</tr>
<tr>
<td>Bibliography</td>
<td>46</td>
</tr>
</tbody>
</table>
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. AAMI maintains a current list of each International Standard that has been adopted by AAMI (and ANSI). Available on the AAMI website at the address below, this list gives the corresponding U.S. designation and level of equivalency to the International Standard.

www.aami.org/standards/glossary.pdf
Committee representation

Association for the Advancement of Medical Instrumentation

Quality Management and Corresponding General Aspects for Medical Devices Committee

The publication of ANSI/AAMI/ISO 80369-6 as a new American National Standard was initiated by the AAMI Quality Management and Corresponding General Aspects for Medical Devices Committee, which also functions as a U.S. Technical Advisory Group to the relevant work in the International Organization for Standardization (ISO). U.S. representatives from the AAMI Small Bore Connectors Committee (U.S. Sub-TAG for ISO/TC 210/JWG 04), chaired by Scott Colburn of FDA and Brad Noe of Becton Dickinson & Co. played an active part in developing ISO 80369-6.

At the time this document was published, the AAMI Quality Management and Corresponding General Aspects for Medical Devices Committee had the following members:

Cochairs: Scott A. Colburn, MS, BSN, RN, FDA/CDRH
Charles B. Sidebottom, PE, PPO Standards LLC

Members: Jon Cammack, AstraZeneca/MedImmune
Jeffrey L. Eggleston, MS PE, Covidien
Sunny Gill, Combination Product Partners
Laila Gurney, MS RAC, GE Healthcare
Rajeswari R. Itharaju, Covidien
Mizanu Kebede, Halyard Health
Ed R. Kimmelman, BME JD, Kimmelman Consultancy
Kristi M. Kistner, RAC ASQ CBA, Amgen Inc
Dan Laelle, Nonin Medical Inc
David G. Osborn, Philips Electronics North America
Christine Park, Christine Park & Associates
Brodie Pedersen, Logic PD
Luann M. Pendy, Medtronic Inc WHQ Campus
Dan Reid, Omnex Engineering and Management
Mike Silvestri, Terumo Americas Corporate
Chandresh Thakur, CareFusion
Al Van Houdt, Spacelabs Medical Inc
John Williams, Baxter Healthcare Corporation
Dadi Zhong, Chongqing University

Alternates: Ujjal Chakravartty, Halyard Health
David J. Geraghty, Spacelabs Medical Inc
Robert Rabeh Hijazi, MS MBA CBET, St Louis VA Medical Center John Cochran Division
Mike Hudon, Philips Electronics North America
Chad Kymal, Omnex Engineering Management
Robert Sestrick, GE Healthcare
Kimberly A. Trautman, FDA/CDRH

Small-bore Connectors Committee

At the time this document was published, the AAMI Small-bore Connectors Committee had the following members:

Cochairs: Scott A. Colburn, MS, BSN, RN, FDA/CDRH
Brad Noe, Becton Dickinson & Company

Members: Mark S. Adams, MBA PMP, Boston Scientific Corporation
Steve J. Bernard, Nestle Healthcare Nutrition Inc
Jim Brown, Colder Products Company
James Brugger, BSME MEEM, NxStage Medical Inc
Edwin L. Burnard, B Braun of America Inc
David Carr, ASQ CQA CMI, Teleflex Medical
Conor Curtin, Fresenius Medical Care

© 2016 Association for the Advancement of Medical Instrumentation ■ ANSI/AAMI/ISO 80369-6:2016
NOTE—Participation by federal agency representatives in the development of this document does not constitute endorsement by the federal government or any of its agencies.

Acknowledgments

The committee gratefully acknowledges Nathan Griffith, Halyard Health; John Miskovic, Hospira; Kyle Steele, Nordson Medical; Robert Virag, TRIFID Medical Medical Group LLC and especially Weston Harding, Becton Dickinson, for their contributions as CAD (computer-aided design) experts to the development of this standard. Their extraordinary commitment of time and effort attests to their dedication to patient safety and is greatly appreciated.

As indicated in the foreword to the main body of this document (page viii), the International Organization for Standardization (ISO) is a worldwide federation of national standards bodies. The United States is one of the ISO members that took an active role in the development of this standard, which was developed by a joint ISO and International Electrotechnical Commission (IEC) working group, ISO/TC 210-IEC/SC 62D/JWG4, Small-bore connectors.

This standard replaces AAMI/CN6, Small-bore connectors for liquids and gases in healthcare applications – Part 6: Connectors for neuraxial applications.

As used within the context of this document, “shall” indicates requirements strictly to be followed to conform to the standard. “Should” indicates that among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but is not prohibited. “May” is used to indicate that a course of action is permissible within the limits of the standard. “Can” is used as a statement of possibility and capability. Finally, “must” is used only to describe unavoidable situations, including those mandated by government regulation.

The concepts incorporated in this standard should not be considered inflexible or static. This standard, like any other, must be reviewed and updated periodically to assimilate progressive technological developments. To remain relevant, it must be modified as technological advances are made and as new data come to light.

Suggestions for improving this standard are invited. Comments and suggested revisions should be sent to Standards Department, AAMI, 4301 N. Fairfax Dr, Suite 301, Arlington, VA 22203-1633.

For a complete copy of this AAMI document, contact AAMI at +1-977-249-8226 or visit www.aami.org.
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 210, Quality management and corresponding general aspects for medical devices, and IEC/SC62D, Electromedical equipment. The draft was circulated for voting to the national bodies of both ISO and IEC.

ISO 80369 consists of the following parts, under the general title Small-bore connectors for liquids and gases in healthcare applications:

— Part 1: General requirements
— Part 3: Connectors for enteral applications
— Part 5: Connectors for limb cuff inflation applications
— Part 6: Connectors for neuraxial applications
— Part 7: Connectors with 6 % (Luer) taper for intravascular or hypodermic applications
— Part 20: Common test methods

An additional part on connectors for urethral and urinary applications is planned.
Introduction

This part of ISO 80369 was developed because of several incidents, with catastrophic consequences, resulting from inappropriate medication, liquid nutritional formula, or air being administered neuraxially. Many incidents have been reported leading to international recognition of the importance of these issues and a need has been identified to develop specific CONNECTORS for MEDICAL DEVICES and their ACCESSORIES used to deliver fluids in other APPLICATIONS.

The ISO 80369 series was developed to prevent misconnection between SMALL-BORE CONNECTORS used in different APPLICATIONS. ISO 80369-1 specifies the requirements necessary to verify the designs and dimensions of SMALL-BORE CONNECTORS to ensure that

a) they do not misconnect with other small-bore connectors, and

b) they safely and securely connect with their mating half.

ISO 80369-20 contains the common TEST METHODS to support the performance requirements for SMALL-BORE CONNECTORS.

This part of ISO 80369 specifies the design and the dimensions and drawings of SMALL-BORE CONNECTORS intended to be used in neuraxial APPLICATIONS. Annex D to Annex G describe the methods by which this design has been assessed. Other parts of ISO 80369 include requirements for SMALL-BORE CONNECTORS used in different APPLICATION categories.

There is international evidence that ‘wrong-route’ medication errors with neuraxial MEDICAL DEVICES have caused deaths and severe HARM. There are reports of non-epidural medications being administered into the epidural space and local anaesthetic solutions intended for epidural administration being administered by the intravenous route.[1][9][14][15][19] There is also a report where an anaesthetic agent for intravenous use was administered into the cerebrospinal fluid via an external ventricular drain[11] and earlier reports of antibiotics being inappropriately administered by this route.

In July 2007, the World Health Organization’s World Alliance for Patient Safety issued Alert 115 describing four incidents in different countries in which vincristine had been accidentally administered by the intrathecal route instead of intravenous route, as intended.[1] The Alert indicated that, since 1968, this same error had been reported 55 times from a variety of institutional settings.

These incidents occurred despite repeated warnings of the RISK and the introduction of extensive labelling requirements and recommendations, intended to standardize practice and reduce risks.

Other health organizations around the world have also issued detailed guidance to minimize the RISK of these ‘wrong-route’ errors.[9][15][20][21]

Nevertheless, reports of fatal incidents following the administration of vinca alkaloids continue to be reported internationally.[22] In 2009, the Food and Drug Administration in the USA issued a Medical Devices Calendar, which included an example of a case study of a neuraxial misconnection.[9]

CONNECTORS manufactured to the dimensions set out within this International Standard are dimensionally incompatible with any of the other CONNECTORS for APPLICATIONS identified in the ISO 80369 series of standards for SMALL-BORE CONNECTORS, except as indicated in G.2. If fitted to the relevant MEDICAL DEVICES and ACCESSORIES, these CONNECTORS should reduce the RISK of air, non-vascular medication and liquid nutritional formula being delivered via an alternative route, such as neuraxially, intravenously, or via an airway device.

In this International Standard, the following print types are used:

— requirements and definitions: roman type;

— informative material appearing outside of tables, such as notes, examples and references: in smaller type. Normative text of tables is also in a smaller type;

— terms defined in ISO 80369-1 and Clause 3: small capitals.

In this part of ISO 80369, the conjunctive “or” is used as an “inclusive or” so a statement is true, if any combination of the conditions is true.

The verbal forms used in this International Standard conform to usage described in ISO/IEC Directives, Part 2, Annex H. For the purposes of this part of ISO 80369, the auxiliary verb

— “shall” means that compliance with a requirement or a test is mandatory for compliance with this part of ISO 80369,
— “should” means that compliance with a requirement or a test is recommended but is not mandatory for compliance with this part of ISO 80369, and

— “may” is used to describe a permissible way to achieve compliance with a requirement or test.

An asterisk (*) as the first character of a title or at the beginning of a paragraph or table title indicates that there is guidance or rationale related to that item in Annex A.
Small-bore connectors for liquids and gases in healthcare applications — Part 6: Connectors for neuraxial applications

1 * Scope

This part of ISO 80369 specifies requirements for SMALL-BORE CONNECTORS intended to be used for CONNECTIONS in neuraxial APPLICATIONS. Neuraxial APPLICATIONS involve the use of MEDICAL DEVICES intended to administer medications to neuraxial sites, wound infiltration anaesthesia delivery, and other regional anaesthesia procedures or to monitor or remove cerebro-spinal fluid for therapeutic or diagnostic purposes.

NOTE 1 Sites for the neuraxial APPLICATION include the spine, intrathecal or subarachnoid space, ventricles of the brain, and the epi-, extra-, or peri-dural space. Neuraxial APPLICATION anaesthetics can be administered regionally affecting a large part of the body, such as a limb, and include plexus blocks, such as the branchial plexus blocks or single nerve blocks. Neuraxial APPLICATION procedures include continuous infusion of wounds with local anaesthetic agents.

NOTE 2 For the purposes of this part of ISO 80369, local anaesthesia injected hypodermically is not considered a neuraxial APPLICATION.

EXAMPLES Intended administration includes intrathecal chemotherapy, local anaesthetics, radiological contrast agents, antibiotics, analgesics.

This part of ISO 80369 specifies dimensions and requirements for the design and functional performance of these SMALL-BORE CONNECTORS intended to be used with MEDICAL DEVICES.

This part of ISO 80369 does not specify requirements for the MEDICAL DEVICES or ACCESSORIES that use these CONNECTORS. Such requirements are given in particular International Standards for specific MEDICAL DEVICES or ACCESSORIES.

NOTE 3 MANUFACTURERS are encouraged to incorporate the SMALL-BORE CONNECTORS specified in this part of ISO 80369 into medical devices, medical systems, or accessories, even if currently not required by the relevant particular medical device standards. It is expected that when the relevant particular medical device standards are revised, requirements for small-bore connectors, as specified in this part of ISO 80369, will be included. Furthermore, it is recognized that standards need to be developed for many MEDICAL DEVICES used for neuraxial APPLICATIONS.

NOTE 4 ISO 80369-1:2010, 5.8, specifies alternative methods of compliance with ISO 80369-1:2010, for small-bore connectors intended for use with neuraxial application medical devices or accessories, which do not comply with this part of ISO 80369.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 14971:2007, Medical devices — Application of risk management to medical devices

ISO 80369-1:2010, Small-bore connectors for liquids and gases in healthcare applications — Part 1: General requirements

ISO 80369-20:2015, Small-bore connectors for liquids and gases in healthcare applications — Part 20: Common test methods