Objectives and uses of AAMI standards and recommended practices

It is most important that the objectives and potential uses of an AAMI product standard or recommended practice are clearly understood. The objectives of AAMI’s technical development program derive from AAMI’s overall mission: the advancement of medical instrumentation. Essential to such advancement are (1) a continued increase in the safe and effective application of current technologies to patient care, and (2) the encouragement of new technologies. It is AAMI’s view that standards and recommended practices can contribute significantly to the advancement of medical instrumentation, provided that they are drafted with attention to these objectives and provided that arbitrary and restrictive uses are avoided.

A voluntary standard for a medical device recommends to the manufacturer the information that should be provided with or on the product, basic safety and performance criteria that should be considered in qualifying the device for clinical use, and the measurement techniques that can be used to determine whether the device conforms with the safety and performance criteria and/or to compare the performance characteristics of different products. Some standards emphasize the information that should be provided with the device, including performance characteristics, instructions for use, warnings and precautions, and other data considered important in ensuring the safe and effective use of the device in the clinical environment. Recommending the disclosure of performance characteristics often necessitates the development of specialized test methods to facilitate uniformity in reporting; reaching consensus on these tests can represent a considerable part of committee work. When a drafting committee determines that clinical concerns warrant the establishment of minimum safety and performance criteria, referee tests must be provided and the reasons for establishing the criteria must be documented in the rationale.

A recommended practice provides guidelines for the use, care, and/or processing of a medical device or system. A recommended practice does not address device performance per se, but rather procedures and practices that will help ensure that a device is used safely and effectively and that its performance will be maintained.

Although a device standard is primarily directed to the manufacturer, it may also be of value to the potential purchaser or user of the device as a frame of reference for device evaluation. Similarly, even though a recommended practice is usually oriented towards healthcare professionals, it may be useful to the manufacturer in better understanding the environment in which a medical device will be used. Also, some recommended practices, while not addressing device performance criteria, provide guidelines to industrial personnel on such subjects as sterilization processing, methods of collecting data to establish safety and efficacy, human engineering, and other processing or evaluation techniques; such guidelines may be useful to health care professionals in understanding industrial practices.

In determining whether an AAMI standard or recommended practice is relevant to the specific needs of a potential user of the device, all AAMI standards and recommended practices are voluntary (unless, of course, they are adopted by government regulatory or procurement authorities). The application of a standard or recommended practice is solely within the discretion and professional judgment of the user of the document.

Each AAMI standard or recommended practice reflects the collective expertise of a committee of health care professionals and industrial representatives, whose work has been reviewed nationally (and sometimes internationally). As such, the consensus recommendations embodied in a standard or recommended practice are intended to respond to clinical needs and, ultimately, to help ensure patient safety. A standard or recommended practice is limited, however, in the sense that it responds generally to perceived risks and conditions that may not always be relevant to specific situations. A standard or recommended practice is an important reference in responsible decision-making, but it should never replace responsible decision-making.

Despite periodic review and revision (at least once every five years), a standard or recommended practice is necessarily a static document applied to a dynamic technology. Therefore, a standards user must carefully review the reasons why the document was initially developed and the specific rationale for each of its provisions. This review will reveal whether the document remains relevant to the specific needs of the user.

Particular care should be taken in applying a product standard or recommended practice to current procedures and practices. While observed or potential risks with existing equipment typically form the basis for safety and performance criteria defined in a standard, professional judgment must be used in applying these criteria to existing equipment. No single source of information will serve to identify a particular product as “unsafe.” A voluntary standard can be used as one resource, but the ultimate decision as to product safety and efficacy must take into account the specifics of its utilization and, of course, cost-benefit considerations. Similarly, a recommended practice should be analyzed in the context of the specific needs and resources of the individual institution or firm. Again, the rationale accompanying each AAMI standard and recommended practice is an excellent guide to the reasoning and data underlying its provision.

In summary, a standard or recommended practice is truly useful only when it is used in conjunction with other sources of information and policy guidance and in the context of professional experience and judgment.

INTERPRETATIONS OF AAMI STANDARDS AND RECOMMENDED PRACTICES

Requests for interpretations of AAMI standards and recommended practices must be made in writing, to the AAMI Vice President, Standards Policy and Programs. An official interpretation must be approved by letter ballot of the originating committee and subsequently reviewed and approved by the AAMI Standards Board. The interpretation will become official and representation of the Association only upon exhaustion of any appeals and upon publication of notice of interpretation in the "Standards Monitor" section of the AAMI News. The Association for the Advancement of Medical Instrumentation disclaims responsibility for any characterization or explanation of a standard or recommended practice which has not been developed and communicated in accordance with this procedure and which is not published, by appropriate notice, as an official interpretation in the AAMI News.
Abstract: This standard establishes minimum construction and performance requirements for small table-top steam sterilizers that use saturated steam as the sterilizing agent and that have a volume less than or equal to 56.63 liters (2 cubic feet).

Keywords: distilled water, moist heat sterilization, process monitoring, saturated steam, steam sterilization
AAMI Standard

This Association for the Advancement of Medical Instrumentation (AAMI) standard implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI standard does not in any respect preclude anyone, whether they have approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. AAMI standards are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI standard may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Interested parties may obtain current information on all AAMI standards by calling or writing AAMI.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

PREVIEW COPY

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.

Published by

Association for the Advancement of Medical Instrumentation
4301 N. Fairfax Drive, Suite 301
Arlington, VA 22203-1633
www.aami.org

© 2011 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

Publication, reproduction, photocopying, storage, or transmission, electronically or otherwise, of all or any part of this document without the prior written permission of the Association for the Advancement of Medical Instrumentation is strictly prohibited by law. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, complete the reprint request form at www.aami.org, or contact AAMI at 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633.
Phone: (703) 525-4890; Fax: (703) 525-1067.

Printed in the United States of America

Contents

Glossary of equivalent standards .. v
Committee representation ... vii
Foreword .. ix

1 Scope .. 1
 1.1 General ... 1
 1.2 Inclusions ... 1
 1.3 Exclusions ... 1

2 Normative references .. 2

3 Definitions, symbols, and abbreviations ... 3

4 Requirements ... 5
 4.1 Labeling .. 5
 4.1.1 Device markings .. 5
 4.1.2 Information manual ... 5
 4.1.3 Service manual .. 6
 4.2 Sterilizer design, construction, components, and accessories ... 6
 4.2.1 Pressure requirements .. 6
 4.2.2 Pressure vessel certification ... 6
 4.2.3 Electrical components ... 6
 4.2.4 Corrosion resistance .. 6
 4.2.5 Air filters .. 6
 4.2.6 Water supply reservoir ... 6
 4.3 Sterilizer safety .. 7
 4.3.1 Interlock ... 7
 4.3.2 Prevention of thermal hazards ... 7
 4.3.3 Sterilizer controls for aborting cycles .. 7
 4.4 Process monitoring and control devices .. 7
 4.4.1 General .. 7
 4.4.2 Chamber temperature ... 7
 4.4.3 Sterilizer temperature control ... 8
 4.4.4 Sterilizer exposure timer ... 8
 4.4.5 Pressure measurement ... 8
 4.4.6 Cycle completion ... 8
 4.4.7 Sterilization fault conditions .. 8
 4.4.8 Cycle documentation ... 8
 4.5 Biological performance of sterilizers ... 9
 4.6 Mechanical air removal ... 9
 4.6.1 Air removal (dynamic-air-removal sterilizers) .. 9
 4.6.2 Air leaks (prevacuum sterilizers) ... 9
 4.6.3 Air removal (gravity-displacement cycles) ... 9
 4.7 Moisture retention .. 9
 4.8 Sterilizer performance certification and recordkeeping .. 9

5 Tests .. 10
 5.1 Labeling .. 10
 5.2 Sterilizer design, construction, components, and accessories ... 10
 5.2.1 Pressure requirements .. 10
 5.2.2 Pressure vessel certification ... 10
 5.2.3 Electrical components ... 10
 5.2.4 Corrosion resistance .. 10
 5.2.5 Air filters .. 10
 5.2.6 Water supply reservoir ... 10
 5.3 Sterilizer safety .. 10
 5.3.1 Interlock ... 10

PREVIEW COPY

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
5.3.2 Prevention of thermal hazards ... 10
5.3.3 Sterilizer controls for aborting cycles .. 10

5.4 Process monitoring and control devices .. 11
5.4.1 General .. 11
5.4.2 Chamber temperature ... 11
5.4.3 Sterilizer temperature control ... 11
5.4.4 Sterilizer exposure timer ... 11
5.4.5 Pressure measurement ... 11
5.4.6 Cycle completion ... 11
5.4.7 Sterilization fault conditions ... 11
5.4.8 Cycle documentation ... 11

5.5 Biological performance of sterilizers ... 12
5.5.1 General testing requirements ... 12
5.5.2 Biological performance with a textile PCD (BI test pack) 12
5.5.3 Biological performance with liquid loads (if applicable) 15
5.5.4 Biological performance with wrapped instrument PCD (BI test tray) 16
5.5.5 Biological performance with dental handpieces 16

5.6 Mechanical air removal ... 18
5.6.1 Air removal (dynamic-air-removal sterilizers) .. 18
5.6.2 Air leaks (prevacuum sterilizers) .. 18
5.6.3 Air removal (gravity-displacement cycles) .. 19

5.7 Moisture retention ... 19
5.7.1 Textile test packs ... 19
5.7.2 Wrapped instrument test trays ... 20
5.7.3 Paper–plastic peel pouches .. 21

5.8 Sterilizer performance certification and recordkeeping 21

Annexes
A Rationale for the development and provisions of this standard 22
B Examples of temperature during the holding time 27
C Examples of cycle documentation .. 30
D Bibliography ... 32

Table
1 Conversions of saturated pressure units at sea level 4

Figures
1 Three-towel PCD (BI test pack) for textile load .. 13
2 Towel folding procedure .. 14
3 Completed wrapped textile PCD (BI test pack) ... 14
4 Folding a surgical towel to yield nine plies (see 5.7.1.1) 20

B.1 Unacceptable process .. 27
B.2 Unacceptable process .. 27
B.3 Unacceptable process .. 28
B.4 Unacceptable process .. 28
B.5 Acceptable process .. 28
B.6 Acceptable process .. 29
C.1 Schematic of cycle phases ... 30
C.2 Example of a cycle printout .. 31
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. For each International Standard that has been adopted by AAMI (and ANSI), the table below gives the corresponding U.S. designation and level of equivalency to the International Standard. NOTE: Documents are sorted by international designation. The code in the US column, “(R)20xx” indicates the year the document was officially reaffirmed by AAMI. E.g., ANSI/AAMI/ISO 10993-4:2002/(R)2009 indicates that 10993-4, originally approved and published in 2002, was reaffirmed without change in 2009. Other normatively referenced International Standards may be under consideration for U.S. adoption by AAMI; therefore, this list should not be considered exhaustive.

<table>
<thead>
<tr>
<th>International designation</th>
<th>U.S. designation</th>
<th>Equivalency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Corrigendum 1 and 2</td>
<td></td>
<td>C1 Identical to Corrigendum 1 & 2</td>
</tr>
<tr>
<td>IEC 80001-1:2010</td>
<td>ANSI/AAMI/IEC 80001-1:2010</td>
<td>Identical</td>
</tr>
<tr>
<td>International designation</td>
<td>U.S. designation</td>
<td>Equivalency</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ISO TS 12417-200X</td>
<td>ANSI/AAMI/ISO TIR12417-200X</td>
<td>Identical</td>
</tr>
<tr>
<td>ISO 15883-1:2006</td>
<td>ANSI/AAMI ST15883-1:2009</td>
<td>Major technical variations</td>
</tr>
<tr>
<td>ISO 17665-1:2006</td>
<td>ANSI/AAMI/ISO 17665-1:2006</td>
<td>Identical (with inclusions)</td>
</tr>
</tbody>
</table>

1 In production
Committee representation

Association for the Advancement of Medical Instrumentation

AAMI Hospital Steam Sterilizer Working Group

This standard was developed by the AAMI Hospital Steam Sterilizer Working Group under the auspices of the AAMI Sterilization Standards Committee. Approval of this standard does not necessarily mean that all working group members voted for its approval.

At the time this document was published, the AAMI Hospital Steam Sterilizer Working Group had the following members:

Cochairs: Rose E. Seavey, RN MBA CNOR CRCST, Seavey Healthcare Consulting Inc. (Independent Expert)
 Mark N. Smith, Getinge USA

Members: Nola Bayes, MBA, Sanford Health (Independent Expert)
 Mark Chiffon, Steris Corporation
 Nancy Chobin, RN CSPDM, St Barnabas Healthcare System (Independent Expert)
 John T. Collins, MSEEE, American Society for Healthcare Engineering
 Ramona Conner, RN MSN CNOR, Association of Perioperative Registered Nurses
 Michele Dawn Demeo, CRCSS CSPDT, Memorial Hospital (Independent Expert)
 Betty D. Edge, Northshore University Hospital (Independent Expert)
 Rosie Fardo, RN BSN CI/CCHSP, Department of Veterans Affairs
 Marcia Ann Frieze, Case Medical Inc.
 Steve N. Goldstine, PhD, Steve Goldstine Consultants (Independent Expert)
 Charles Oren Hancock, RAC, H&W Technology LLC.
 Rachel Hill, CareFusion
 Michael Shane Huey, BA CRCSS, St Mary's Medical Center (Independent Expert)
 Brian Hvizdak, Belmed Inc.
 Nyla Skee Japp, PhD RN CSPDM, Integrated Medical Systems (Independent Expert)
 Steve Kirckof, 3M Healthcare
 Susan G. Klaik, CCSSMC FCS ACE, IAHCSMM
 Colleen Patricia Landers, RN, Landers Consulting CSA (Independent Expert)
 Shannon E. Mills, American Dental Association
 Emily Mitzel, MS, Nelson Laboratories Inc.
 Thomas K. Moore, (Independent Expert)
 Gregg A. Mosley, Biostek Laboratories Inc.
 Leslie A. Phillips, Bausch & Lomb Inc.
 Anthony Powell, Getinge USA
 Shaundrea L. Rechsteiner, NAMSA
 Elizabeth A. Riegel, FDA/CDRH
 Frank Sizemore, Wake Forest University - Baptist Medical Center (Independent Expert)
 Linda Slone, RN BSPA CNOR, (Independent Expert)
 Gary J. Socolo, SPS Medical Supply Corp
 Andy Sun, SciCan Ltd.
 Michael D. Tambasco, Propper Manufacturing Co. Inc.
 Nora E. Wikander, RN CSPDM, St Josephs Wayne Hospital (Independent Expert)

Alternates: Dorin Cioraca, SciCan Ltd.
 Lori Colvin, Stents Corporation
 Julie M. Conyer, Bausch & Lomb Inc.
 Joel R. Gorski, PhD, NAMSA
 Thomas Grobaski, Belmed Inc.
 Steve Gruninger, American Dental Association
 Danny Hutson, CareFusion
 Natalie Lind, IAHCSMM
 Tania Lupu, Case Medical Inc.
 Sheila A. Murphey, FDA/CDRH
 Jason Pope, Nelson Laboratories Inc.
 Mark N. Smith, Getinge USA
 Donald Tumminelli, SPS Medical Supply Corporation
 Jonathan A. Wilder, PhD, H&W Technology LLC
 Kelvin J. Witcher, 3M Healthcare

© 2011 Association for the Advancement of Medical Instrumentation ■ ANSI/AAMI ST55:2010 vii
NOTE—Participation by federal agency representatives in the development of this standard does not constitute endorsement by the federal government or any of its agencies.

At the time this document was published, the **AAMI Sterilization Standards Committee** had the following members:

Cochairs:
- Victoria M. Hitchins, PhD
- Michael H. Scholla, MS, PhD

Members:
- Trabue D. Bryans, WuXi AppTec Inc.
- Peter A. Burke, PhD, STERIS Corporation
- Nancy Chobin, RN, CSPDM, Saint Barnabas Health Care System, West Orange, NJ
- Charles Cogdill, Boston Scientific Corporation
- Ramona Conner, RN, MSN, CNOR, Association of periOperative Registered Nurses
- Jacqueline Daley, Association for Professionals in Infection Control and Epidemiology
- Kimbrell Darnell, CR Bard
- David Dion, Cardinal Health
- Lisa Foster, Sterigenics International
- Joel R. Gorski, PhD, NAMSA
- Deborah A. Havlik, Hospira Worldwide Inc.
- Victoria M. Hitchins, PhD, U.S. Food and Drug Administration
- Lois Atkinson Jones, MS, Cary, IN
- Susan G. Klacik, CCSMC, FCS, ACE, International Association of Healthcare Central Service Materiel Management
- Byron J. Lambert, PhD, Abbott Laboratories
- Colleen Patricia Landers, RN, Canadian Standards Association
- Lisa N. Macdonald, Becton Dickinson & Company
- Jeff Martin, Alcon Laboratories Inc.
- Patrick J. McCormick, PhD, Bausch & Lomb Inc.
- Rainer Newman, Johnson & Johnson
- Janet M. Prust, 3M Health Care
- Nancy J. Rakiewicz, Ethox International Inc.
- Michael H. Scholla, MS, PhD, DuPont Nonwovens
- Mark Seybold, Baxter Healthcare Corporation
- Andrew Sharavara, Propper Manufacturing Co. Inc.
- Mark N. Smith, RAC, Getinge USA Inc.
- William N. Thompson, Covidien
- James L. Whitby, MA, MB, FRCP, London, Ontario
- Martell Kress Winters, SM, Nelson Laboratories Inc.
- William E. Young, Deerfield, IL

Alternates:
- Lloyd Brown, Covidien
- Glenn W. Calvert, Becton Dickinson & Company
- Steven J. Elliott, WuXi AppTec
- Thomas J. Frazier, Johnson & Johnson
- Kathy Hoffman, Sterigenics International
- Jim Kaiser, Bausch & Lomb Inc.
- Joseph J. Lasich, Alcon Research Ltd.
- Chiu S. Lin, PhD, U.S. Food and Drug Administration
- Natalie Lind, International Association of Healthcare Central Service Materiel Management
- Reynaldo Lopez, Cardinal Health
- Ralph Makinen, Boston Scientific Corporation
- Mary S. Mayo, CR Bard
- David Ford McGoldrick, Abbott Laboratories
- Jerry R. Nelson, MS, PhD, Nelson Laboratories Inc.
- Karen Polkinghorne, DuPont Nonwovens
- Michael Sadowski, Baxter Healthcare Corporation
- John R. Scoville, Jr., STERIS Corporation
- Jason Voisinet, Ethox International Inc.
- Craig A. Wallace, 3M Health Care
- Valerie Welter, Hospira Worldwide Inc.

NOTE—Participation by federal agency representatives in the development of this standard does not constitute endorsement by the federal government or any of its agencies.
Foreword

This standard was developed by the AAMI Hospital Steam Sterilizer Working Group under the auspices of the AAMI Sterilization Standards Committee. The objective of this standard is to provide minimum labeling, safety, performance, and testing requirements to help ensure a reasonable level of safety and efficacy of table-top steam sterilizers that are intended for use in health care facilities and that have a volume less than or equal to 2 cubic feet.

This standard is the third edition of *Table-top steam sterilizers*, which was first published as an American National Standard in 1997 as ANSI/AAMI ST55:1997. In comparison to the second edition, which was approved in 2003, this new edition covers cassette sterilizers (which were excluded from the scope of previous editions), incorporates revisions of the methodology for testing the biological performance of table-top steam sterilizers with dental handpieces, and includes a requirement that certain sterilizers be tested for noncondensable gases.

Compliance with this standard does not guarantee that sterilization will be achieved, but it does help ensure that the steam sterilizer will be capable of providing the conditions necessary to achieve product sterility when operated according to appropriate procedures.

Compliance with this standard is voluntary. The existence of the standard does not preclude anyone from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard.

This voluntary standard is intended primarily for use by equipment manufacturers in the performance and design qualification of table-top steam sterilizers intended for use in health care facilities. The criteria defined in this standard might be useful to health care personnel and purchasing authorities in the acquisition process. However, the standard is not intended to provide guidelines for hospital receiving–inspection testing or for steam sterilization procedures in health care facilities. In addition, any problems with existing equipment should not be judged solely in terms of conformance to this standard.

As used within the context of this document, “shall” indicates requirements to be strictly followed in order to conform to the standard; “should” indicates that among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but is not prohibited; “may” is used to indicate that a course of action is permissible within the limits of the standard; and “can” is used as a statement of possibility and capability. “Must” is used only to describe “unavoidable” situations, including those mandated by government regulation.

This standard should be considered flexible and dynamic. AAMI and ANSI procedures require that standards be reviewed every five years and, if necessary, revised to reflect technological advances that may have occurred since publication.

Suggestions for improving this standard are invited. Comments and suggested revisions should be sent to Technical Programs, AAMI, 4301 N. Fairfax Dr., Suite 301, Arlington, VA 22203-1633.

NOTE—This foreword does not contain provisions of the American National Standard, *Table-top steam sterilizers* (ANSI/AAMI ST55:2010), but it does provide important information about the development and intended use of the document.
This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Table-top steam sterilizers

1 Scope

1.1 General

This standard applies to steam sterilizers that are intended for use in health care facilities and that have a volume less than or equal to 56.63 liters (2 cubic feet [ft³]).

NOTE—For purposes of this standard, health care facilities refers to hospitals, nursing homes, extended-care facilities, freestanding surgical centers, clinics, and medical and dental offices. For convenience, the term hospital is sometimes used in this standard; in all instances, this term should be taken to encompass all other health care facilities.

1.2 Inclusions

This standard covers minimum labeling, safety, performance, and testing requirements for small steam sterilizers, including cassette sterilizers, that have a volume less than or equal to 56.63 liters (2 ft³), have automatic controls, and provide means of controlling time and temperature. Definitions of terms and normative references are also included, as well as an annex explaining the rationale for the provisions of the standard and other informative annexes.

NOTE—This standard is intended primarily for use by manufacturers in the performance and design qualification of table-top steam sterilizers that are intended for use in health care facilities. The criteria defined in this standard might be useful to health care personnel and purchasing authorities in the acquisition process. However, the standard is not intended to provide guidelines for receiving–inspection testing or steam sterilization procedures in health care facilities.

1.3 Exclusions

Manually controlled steam sterilizers (i.e., sterilizers without software control) and all other sterilizers not covered in 1.2 are excluded from the scope of this standard.

NOTE—Minimum labeling and performance requirements for large steam sterilizers (those having a volume greater than 56.63 liters [2 ft³]) are covered in ANSI/AAMI ST8. Guidelines for steam sterilization procedures in health care facilities, including typical steam sterilization cycle parameters, are provided in ANSI/AAMI ST79.