Objectives and uses of AAMI standards and recommended practices

It is most important that the objectives and potential uses of an AAMI product standard or recommended practice are clearly understood. The objectives of AAMI's technical development program derive from AAMI's overall mission: the advancement of medical instrumentation. Essential to such advancement are (1) a continued increase in the safe and effective application of current technologies to patient care, and (2) the encouragement of new technologies. It is AAMI's view that standards and recommended practices can contribute significantly to the advancement of medical instrumentation, provided that they are drafted with attention to these objectives and provided that arbitrary and restrictive uses are avoided.

A voluntary standard for a medical device recommends to the manufacturer the information that should be provided with or on the product, basic safety and performance criteria that should be considered in qualifying the device for clinical use, and the measurement techniques that can be used to determine whether the device conforms with the safety and performance criteria and to compare the performance characteristics of different products. Some standards emphasize the information that should be provided with the device, including performance characteristics, instructions for use, warnings, and precautions, and other data considered important in ensuring the safe and effective use of the device in the clinical environment. Recommending the development of performance characteristics often necessitates the development of specialized test methods to facilitate uniformity in reporting; reaching consensus on these tests can represent a considerable part of committee work. When a drafting committee determines that clinical concerns warrant the establishment of minimum safety and performance criteria, referee tests must be provided and the reasons for establishing the criteria must be documented in the rationale.

A recommended practice provides guidelines for the use, care, and/or processing of a medical device or system. A recommended practice does not address device performance per se, but rather procedures and practices that will help ensure that a device is used safely and effectively and that its performance will be maintained.

Although a device standard is primarily directed to the manufacturer, it may also be of value to the potential purchaser or user of the device as a frame of reference for device evaluation. Similarly, even though a recommended practice is usually oriented towards healthcare professionals, it may be useful to the manufacturer in better understanding the environment in which a medical device will be used. Also, some recommended practices, while not addressing device performance criteria, provide guidelines to industrial personnel on such subjects as sterilization processing, methods of collecting data to establish safety and efficacy, human engineering, and other processing or evaluation techniques; such guidelines may be useful to health care professionals in understanding industrial practices.

In determining whether an AAMI standard or recommended practice is relevant to the specific needs of a potential user of the document, several important concepts must be recognized:

All AAMI standards and recommended practices are voluntary (unless, of course, they are adopted by government regulatory or procurement authorities). The application of a standard or recommended practice is solely within the discretion and professional judgment of the user of the document.

Each AAMI standard or recommended practice reflects the collective expertise of a committee of health care professionals and industrial representatives, whose work has been reviewed nationally (and sometimes internationally). As such, the consensus recommendations embodied in a standard or recommended practice are intended to respond to clinical needs and, ultimately, to help ensure patient safety. A standard or recommended practice is limited, however, in the sense that it responds generally to perceived risks and conditions that may not always be relevant to specific situations. A standard or recommended practice is an important reference in responsible decision-making, but it should never replace responsible decision-making.

Despite periodic review and revision (at least once every five years), a standard or recommended practice is necessarily a static document applied to a dynamic technology. Therefore, a standards user must carefully review the reasons why the document was initially developed and the specific rationale for each of its provisions. This review will reveal whether the document remains relevant to the specific needs of the user.

Particular care should be taken in applying a product standard to existing devices and equipment, and in applying a recommended practice to current procedures and practices. While observed or potential risks with existing equipment typically form the basis for the safety and performance criteria defined in a standard, professional judgment must be used in applying these criteria to existing equipment. No single source of information will serve to identify a particular product as "unsafe." A voluntary standard can be used as one resource, but the ultimate decision as to product safety and efficacy must take into account the specifics of its utilization and, of course, cost-benefit considerations. Similarly, a recommended practice should be analyzed in the context of the specific needs and resources of the individual institution or firm. Again, the rationale accompanying each AAMI standard and recommended practice is an excellent guide to the reasoning and data underlying its provision.

In summary, a standard or recommended practice is truly useful only when it is used in conjunction with other sources of information and policy guidance and in the context of professional experience and judgment.

INTERPRETATIONS OF AAMI STANDARDS AND RECOMMENDED PRACTICES

Requests for interpretations of AAMI standards and recommended practices must be made in writing, to the AAMI Vice President, Standards Policy and Programs. An official interpretation must be approved by letter ballot of the originating committee and subsequently reviewed and approved by the AAMI Standards Board. An official interpretation will become official and representation of the Association only upon exhaustion of any appeals and upon publication of notice of interpretation in the "Standards Monitor" section of the AAMI News. The Association for the Advancement of Medical Instrumentation disclaims responsibility for any characterization or explanation of a standard or recommended practice which has not been developed and communicated in accordance with this procedure and which is not published, by appropriate notice, as an official interpretation in the AAMI News.
Abstract: This recommended practice provides guidelines for the proper handling, processing, and preparation of reusable surgical textiles either on-site or off-site for use in health care facilities. This recommended practice specifically addresses design criteria for functional work areas; staff qualifications, education, training, dress codes, and other personnel considerations; receiving and handling of soiled surgical textiles; laundry processing considerations; transport of both soiled and clean surgical textiles; installation, care, and maintenance of laundry equipment; quality control; and regulatory considerations. Definitions of terms and a bibliography are also provided.

Keywords: laundry, surgical drapes, surgical gowns, wrappers
AAMI Recommended Practice

This Association for the Advancement of Medical Instrumentation (AAMI) recommended practice implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI recommended practice does not in any respect preclude anyone, whether they have approved the recommended practice or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the recommended practice. AAMI recommended practices are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI recommended practice may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this recommended practice no later than five years from the date of publication. Interested parties may obtain current information on all AAMI documents by calling or writing AAMI.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary of equivalent standards</td>
<td>vii</td>
</tr>
<tr>
<td>Committee representation</td>
<td>ix</td>
</tr>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>Introduction: Need for the recommended practice</td>
<td>xii</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.1 General</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Inclusions</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Exclusions</td>
<td>1</td>
</tr>
<tr>
<td>2 Definitions, symbols, and abbreviations</td>
<td>2</td>
</tr>
<tr>
<td>3 Design considerations</td>
<td>5</td>
</tr>
<tr>
<td>3.1 General rationale</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Work area design and functional work flow</td>
<td>6</td>
</tr>
<tr>
<td>3.2.1 Definitions of work areas</td>
<td>6</td>
</tr>
<tr>
<td>3.2.2 Design criteria for work areas</td>
<td>7</td>
</tr>
<tr>
<td>3.2.3 Functional work flow patterns</td>
<td>8</td>
</tr>
<tr>
<td>3.2.4 Traffic control</td>
<td>8</td>
</tr>
<tr>
<td>3.3 Physical facilities: laundry area</td>
<td>8</td>
</tr>
<tr>
<td>3.3.1 Space requirements</td>
<td>8</td>
</tr>
<tr>
<td>3.3.2 Mechanical systems</td>
<td>8</td>
</tr>
<tr>
<td>3.3.3 Floors, walls, ceilings, and vents</td>
<td>8</td>
</tr>
<tr>
<td>3.3.4 Ventilation</td>
<td>9</td>
</tr>
<tr>
<td>3.3.5 Temperature and humidity control</td>
<td>9</td>
</tr>
<tr>
<td>3.3.6 Lighting systems</td>
<td>9</td>
</tr>
<tr>
<td>3.3.7 Handwashing facilities</td>
<td>9</td>
</tr>
<tr>
<td>3.3.8 Emergency eyewash/shower equipment</td>
<td>9</td>
</tr>
<tr>
<td>3.3.9 Soil-sort area</td>
<td>10</td>
</tr>
<tr>
<td>3.3.10 Chemical storage area</td>
<td>10</td>
</tr>
<tr>
<td>3.3.11 Storage area for clean textile packs</td>
<td>10</td>
</tr>
<tr>
<td>3.3.12 Housekeeping</td>
<td>10</td>
</tr>
<tr>
<td>3.4 Physical facilities: surgical pack assembly area</td>
<td>11</td>
</tr>
<tr>
<td>3.4.1 Space requirements</td>
<td>11</td>
</tr>
<tr>
<td>3.4.2 Mechanical systems</td>
<td>11</td>
</tr>
<tr>
<td>3.4.3 Floors, walls, ceilings, and vents</td>
<td>11</td>
</tr>
<tr>
<td>3.4.4 Ventilation</td>
<td>11</td>
</tr>
<tr>
<td>3.4.5 Temperature and humidity control</td>
<td>11</td>
</tr>
<tr>
<td>3.4.6 Lighting systems</td>
<td>12</td>
</tr>
<tr>
<td>3.4.7 Hand hygiene facilities</td>
<td>12</td>
</tr>
<tr>
<td>3.4.8 Storage area for clean textile packs</td>
<td>12</td>
</tr>
<tr>
<td>3.4.9 Surgical pack sterilization area</td>
<td>12</td>
</tr>
<tr>
<td>3.4.10 Sterile storage area</td>
<td>12</td>
</tr>
<tr>
<td>3.4.11 Housekeeping</td>
<td>12</td>
</tr>
<tr>
<td>4 Personnel considerations</td>
<td>12</td>
</tr>
<tr>
<td>4.1 General rationale</td>
<td>12</td>
</tr>
<tr>
<td>4.2 Qualifications</td>
<td>13</td>
</tr>
<tr>
<td>4.2.1 Supervisors/managers</td>
<td>13</td>
</tr>
<tr>
<td>4.2.2 Personnel</td>
<td>13</td>
</tr>
<tr>
<td>4.3 Training and education</td>
<td>13</td>
</tr>
<tr>
<td>4.4 Health and personal hygiene</td>
<td>14</td>
</tr>
<tr>
<td>4.5 Attire</td>
<td>15</td>
</tr>
<tr>
<td>4.5.1 General</td>
<td>15</td>
</tr>
</tbody>
</table>
4.5.2 Personal protective equipment (PPE) ... 15

5 Receiving and handling of reusable surgical textiles .. 15
 5.1 General rationale .. 15
 5.2 Newly purchased items ... 16
 5.2.1 Identification and handling ... 16
 5.2.2 Washing .. 16
 5.3 Collecting and transporting soiled surgical textiles ... 16
 5.3.1 Collecting soiled surgical textiles at the point of use .. 16
 5.3.2 Transporting soiled surgical textiles ... 16
 5.4 Sorting of soiled textiles ... 17
 5.4.1 General considerations ... 17
 5.4.2 Pre-sort systems .. 17
 5.4.3 Post-sort systems ... 17

6 Laundry processing recommendations ... 18
 6.1 General rationale .. 18
 6.2 Washing ... 18
 6.2.1 Procedures .. 18
 6.2.2 Loading of washing equipment ... 18
 6.2.3 Steps in the washing process: laundry formulas .. 18
 6.3 Drying .. 20
 6.3.1 Procedures .. 20
 6.3.2 Equipment loading .. 20
 6.3.3 Steps in the drying process: drying formulas ... 21
 6.4 Process monitoring ... 21
 6.4.1 Rationale for process monitoring .. 21
 6.4.2 Process monitoring: supplies ... 21
 6.4.3 Process monitoring: equipment operation ... 23
 6.4.4 Process monitoring: finished products ... 23

7 Inspection, testing, and maintenance of laundered textiles 24
 7.1 General rationale .. 24
 7.2 Visual inspection .. 25
 7.2.1 Quality standards ... 25
 7.2.2 Stains .. 25
 7.2.3 Physical defects .. 27
 7.2.4 Chemical or thermal damage .. 27
 7.2.5 Foreign debris ... 27
 7.2.6 Labeling ... 28
 7.2.7 Tracking system .. 28
 7.3 Testing ... 28
 7.3.1 Test procedures .. 28
 7.3.2 Microbiological cleanliness ... 29
 7.3.3 Effective life ... 29
 7.3.4 Important functional attributes .. 29
 7.4 Maintenance ... 31
 7.4.1 Patching .. 31
 7.4.2 Mending ... 31
 7.4.3 Rewash ... 31
 7.4.4 Rejuvenation ... 32
 7.4.5 Retirement or alternate use ... 32

8 Preparation and packaging .. 32
 8.1 General rationale .. 32
 8.2 Procedures .. 32
 8.3 Folding ... 32
 8.3.1 General considerations ... 32
 8.3.2 Guidelines for folding gowns ... 32
 8.3.3 Guidelines for folding drapes ... 33
 8.4 Pack assembly .. 34
8.5 Wrapping...34
8.6 Labeling/identification of packs.................................34

9 Handling, transport, and storage of laundered textiles35
 9.1 General rationale..35
 9.2 Procedures..35
 9.3 Personnel attire and hygiene...35
 9.4 Handling clean/sterile textiles......................................35
 9.5 Transport...35
 9.5.1 General considerations..35
 9.5.2 Method of transport..35
 9.5.3 Separation of clean/sterile and soiled textiles..........36
 9.5.4 Laundry cart cleaning, disinfection, and loading.......36
 9.5.5 Truck cleaning and loading..................................36
 9.6 Storage...37
 9.6.1 Storage conditions..37
 9.6.2 Storage shelves..37
 9.6.3 Stock rotation..37

10 Installation, operation, care, and maintenance of laundry equipment ..37
 10.1 General rationale..37
 10.2 Documentation...38
 10.2.1 Identification..38
 10.2.2 Safety...38
 10.2.3 Manuals and installation/operating instructions........38
 10.3 Installation..38
 10.3.1 General considerations..38
 10.3.2 Utilities..39
 10.4 Operation...40
 10.4.1 General considerations..40
 10.4.2 Washing, extraction, and drying equipment..........40
 10.4.3 Support systems...40
 10.5 Routine care and maintenance......................................42
 10.5.1 Routine care...42
 10.5.2 Scheduled (preventive) maintenance.......................42
 10.5.3 Unscheduled maintenance (repairs).......................42
 10.5.4 Calibration...42
 10.5.5 Recordkeeping..43

11 Quality control..34
 11.1 General rationale..34
 11.2 General quality control criteria...................................34
 11.2.1 Functional performance criteria.........................34
 11.2.2 Verification of laundry processes.........................34
 11.3 Policies and procedures..35
 11.4 Barrier efficacy..36
 11.5 Tracking uses of reusable surgical textile products...........37
 11.6 Process performance...38
 11.6.1 Quality assessment..38
 11.6.2 Quality process...39

12 Medical device regulatory considerations..............................47

Annexes

A Examples of folding procedures.....................................48
B Bibliography..51

Tables
1 An example of inspection criteria for stains........................46
Figures

A.1 Example of a folding procedure for gowns ...48
A.2 Example of a folding procedure for standard laparotomy drapes49
A.3 Example of a folding procedure for mayo stand covers ..50
A.4 Example of a folding procedure for towels ..50
A.5 Example of a folding procedure for sheets ...50
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. For each International Standard that has been adopted by AAMI (and ANSI), the table below gives the corresponding U.S. designation and level of equivalency to the International Standard. NOTE: Documents are sorted by international designation.

Other normatively referenced International Standards may be under consideration for U.S. adoption by AAMI; therefore, this list should not be considered exhaustive.

<table>
<thead>
<tr>
<th>International designation</th>
<th>U.S. designation</th>
<th>Equivalency</th>
</tr>
</thead>
<tbody>
<tr>
<td>International designation</td>
<td>U.S. designation</td>
<td>Equivalency</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
Committee representation

Association for the Advancement of Medical Instrumentation
Reusable Surgical Textile Processing Working Group

This recommended practice was developed by the AAMI Reusable Surgical Textile Processing Working Group under the auspices of the AAMI Sterilization Standards Committee. Approval of the recommended practice does not necessarily mean that all working group members voted for its approval.

At the time this document was published, the AAMI Reusable Surgical Textile Processing Working Group had the following members:

Cochairs:
- John Hamilton
- Linda A. Slone, RN, CNOR

Members:
- Nola Bayes, MBA, Wentworth-Douglass Hospital, Dover, NH
- Nathan L. Belkin, PhD, Clearwater, FL
- Peter L. Brown, W.L. Gore & Associates
- Bradley J. Bushman, Standard Textile Co., Inc.
- Nancy Chobin, RN, CSPDM, St. Barnabas Health Care System, West Orange, NJ
- Linda Clement, CRCST, STERIS Corporation
- Ramona Conner, RN, MSN, CNOR, Association of PeriOperative Registered Nurses
- Betty D. Edge, North Shore University Hospital, Manhasset, NY
- Linda Fairbanks, Association for Linen Management
- John Hamilton, SRI Surgical
- Charles O. Hancock, H&W Technology LLC
- Jeffrey Hills, RM, Nelson Laboratories, Inc.
- Nyla Skee Japp, RN, PhD, CSPDM, IMS, Phoenix, AZ
- David W. Johnson, RM, Nelson Laboratories, Inc.
- Colleen Patricia Landers, RN, Canadian Standards Association
- Mark E. Lanning, Hill-Rom Company
- Sharon K. Lappalainen, U.S. Food and Drug Administration
- Teckla A. Maresca, LPN, CSPDM, St. Clare’s Health System, Denville, NJ
- Joseph A. Palomo, Cardinal Health
- K. John Pournoor, PhD, 3M Health Care
- Frank Sizemore, Wake Forest University Baptist Medical Center, Winston-Salem, NC
- Linda A. Slone, RN, CNOR, Sibley Memorial Hospital, Washington, DC
- Donna Swenson, CSPDM, West Suburban Hospital Medical Center, Oak Park, IL
- Nora E. Wikander, RN, CSPDM, St. Joseph’s Wayne Hospital, Wayne, NJ

Alternates:
- Pamela Carter, RN, CNOR, STERIS Corporation
- Todd Hillam, MBA, Nelson Laboratories Inc.
- Sheila A. Murphey, MD, U.S. Food and Drug Administration

NOTE—Participation by federal agency representatives in the development of this recommended practice does not constitute endorsement by the federal government or any of its agencies.
At the time this document was published, the **AAMI Sterilization Standards Committee** had the following members.

Chairs:
- Victoria M. Hitchins, PhD
- William E. Young

Members:
- Trabue D. Bryans, WuXi AppTec Inc.
- Peter A. Burke, PhD, STERIS Corporation
- Nancy Chobin, RN, CSPDM, Saint Barnabas Health Care System, West Orange, NJ
- Charles Cogdill, Boston Scientific Corporation
- Ramona Conner, RN, MSN, CNOR, Association of periOperative Registered Nurses
- Jacqueline Daley, Association for Professionals in Infection Control and Epidemiology
- Kimbrell Darnell, CR Bard
- Lisa Foster, Sterigenics International
- Joel R. Gorski, PhD, NAMSA
- Deborah A. Havlik, Hospira Worldwide Inc.
- Victoria M. Hitchins, PhD, U.S. Food and Drug Administration
- Danny Hutson, Cardinal Health
- Lois Atkinson Jones, MS, Cary, IN
- Susan G. Klaicik, CCSMC, FCS, ACE, International Association of Healthcare Central Service Materiel Management
- Byron J. Lambert, PhD, Abbott Laboratories
- Colleen Patricia Landers, RN, Canadian Standards Association
- Lisa N. Macdonald, Becton Dickinson & Company
- Jeff Martin, Alcon Laboratories Inc.
- Patrick J. McCormick, PhD, Bausch & Lomb Inc.
- Rainer Newman, Johnson & Johnson
- Janet Prust, 3M Health Care
- Nancy J. Rakiewicz, Ethox International Inc.
- Michael H. Scholla, MS, PhD, DuPont Nonwovens
- Mark Seybold, Baxter Healthcare Corporation
- Andrew Sharavana, Propper Manufacturing Co. Inc.
- Mark N. Smith, Getinge USA
- William N. Thompson, Covidien
- James L. Whitby, MA, MB, FRCP, London, Ontario
- Martell Kress Winters, SM, Nelson Laboratories Inc.

Alternates:
- Lloyd Brown, Covidien
- Glenn W. Calvert, Becton Dickinson & Company
- David Dion, Cardinal Health
- Steven J. Elliott, WuXi AppTec Inc.
- Thomas J. Frazier, Johnson & Johnson
- Kathy Hoffmann, Sterigenics International
- Jim Kaiser, Bausch & Lomb Inc.
- Joseph J. Lasich, Alcon Laboratories Inc.
- Chiu Lin, PhD, U.S. Food and Drug Administration
- Natalie Lind, International Association of Healthcare Central Service Materiel Management
- Ralph Makinen, Boston Scientific Corporation
- Mary S. Mayo, CR Bard
- David Ford McGoldrick, Abbott Laboratories
- Jerry R. Nelson, MS, PhD, Nelson Laboratories Inc.
- Karen Polkinghorne, DuPont Nonwovens
- Michael Sadowski, Baxter Healthcare Corporation
- John R. Scoville, Jr., STERIS Corporation
- Jason Voisinet, Ethox International Inc.
- Craig A. Wallace, 3M Health Care
- Valerie Welte, Hospira Worldwide Inc.
- William E. Young, Boston Scientific Corporation

NOTE—Participation by federal agency representatives in the development of this recommended practice does not constitute endorsement by the federal government or any of its agencies.
Foreword

This recommended practice was developed by the AAMI Reusable Surgical Textile Processing Working Group under the auspices of the AAMI Sterilization Standards Committee. The objective of this recommended practice is to provide guidance in the handling and processing of reusable surgical textiles.

This recommended practice is the second edition of ANSI/AAMI ST65:2000, Processing of Reusable Surgical Textiles for Use in Health Care Facilities. In addition to a general updating of the glossary and bibliography, the new edition reflects the incorporation of new provisions regarding sharps precautions, stains and discolorations, ANSI/AAMI PB70, and folding, as well as the revision of the recommendations regarding bleaching, pack identification, the transport and storage of textiles, strike-through, and medical device regulatory considerations.

The provisions of this recommended practice should be reviewed by various department managers, as applicable, and adapted to the needs of their particular institutions. Written policies and procedures should be developed and implemented in consultation with representatives of end users.

This recommended practice reflects the conscientious efforts of health care professionals, in cooperation with representatives of hospital-owned laundries and outsourcing services, to develop recommendations for optimum performance levels in the processing of reusable surgical textiles. It is not intended that these recommendations be construed as universally applicable in all circumstances. Also, it is recognized that in many cases these recommendations might not be immediately achievable. Therefore, the document should be used to guide personnel toward desirable performance objectives, and all of its provisions should be considered and applied in the light of professional judgment and experience.

The concepts incorporated in this recommended practice should be considered flexible and dynamic. The recommendations set forth in this document are reviewed and updated periodically to assimilate progressive technological developments. AAMI policies and procedures require that AAMI standards and recommended practices be reviewed and, if necessary, revised at least once every 5 years.

As used within the context of this document, “shall” indicates requirements strictly to be followed in order to conform to the recommended practice; “should” indicates that among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but is not prohibited; “may” is used to indicate that a course of action is permissible within the limits of the recommended practice; and “can” is used as a statement of possibility and capability. “Must” is used only to describe “unavoidable” situations, including those mandated by government regulation.

Suggestions for improving this recommended practice are invited. Comments and suggested revisions should be sent to Standards Department, AAMI, 1110 N. Glebe Road, Suite 220, Arlington, VA 22201-4795.

NOTE—This foreword does not contain provisions of ANSI/AAMI ST65, Processing of reusable surgical textiles for use in health care facilities, but it does provide important information about the development and intended use of the document.
Introduction: Need for the recommended practice

Hospital-owned laundries, as well as those providing outsourcing services to health care facilities, are providing clean and disinfected surgical textiles, nonsterile reusable surgical textile packs, and/or sterile reusable surgical textile packs to health care facilities. The ability of service providers to furnish reusable products that meet the performance requirements of end users while providing quality patient care has been enhanced by technological advances in reusable textiles and processing equipment. Current and future advancements in this segment of the industry may necessitate modified or alternative processing techniques.

This recommended practice is intended to provide guidelines that will help materiel managers, laundry managers, central service managers, and other health care professionals implement effective quality assurance systems for the processing of reusable surgical textiles. The guidelines provided here may also be useful to hospitals/users in evaluating the capabilities of facilities being considered for the processing of reusable surgical textiles.

It should be noted that laundry facilities that place surgical textiles (whether sterile or nonsterile) into commercial distribution come under the jurisdiction of Food and Drug Administration (FDA) regulations (see Section 12). In addition, laundry facilities in general may be subject to local, state, and/or federal Environmental Protection Agency (EPA) and Occupational Safety and Health Administration (OSHA) requirements.
Processing of reusable surgical textiles for use in health care facilities

1 Scope

1.1 General

This recommended practice provides guidelines for properly handling, processing, and preparing reusable surgical textiles for use in health care facilities. These guidelines describe a quality assurance program for the processing of reusable surgical textiles, including processes and techniques for the preparation of clean bulk items for delivery to user sites and the assembly of textile packs for sterilization prior to end use. These guidelines apply to all facilities that process surgical textiles, whether on-premise laundries (OPLs), hospital-owned cooperatives, or commercial facilities.

NOTE 1—Surgical textiles labeled for single use only should not be reprocessed or reused, because it may not be possible to adequately reprocess them and maintain their performance and safety attributes. In addition, the health care facility's liability may be affected if the manufacturer’s written instructions for use are not followed. See also FDA regulations applicable to the reprocessing of single-use medical devices (www.fda.gov/cdrh/reprocessing/).

NOTE 2—For purposes of this recommended practice, “health care facility” means hospitals, nursing homes, extended care facilities, freestanding surgical centers, clinics, and medical, surgical, and dental offices. For convenience, the term “hospital” is sometimes used in this recommended practice; in all instances, the term should be taken to encompass all other health care facilities.

1.2 Inclusions

This recommended practice specifically addresses:

a) design criteria for functional work areas involved with the receiving, staging, and handling of soiled surgical textiles; the separation of soiled and clean textiles; the laundering of reusable surgical textiles; and the inspection and preparation of clean bulk items and surgical textile packs;

b) staff qualifications, education, training, dress codes, and other personnel considerations;

c) transporting, receiving, and handling of both newly purchased and soiled surgical textiles;

d) laundry processing (loading, washing, drying) recommendations;

e) inspection, testing, and maintenance of laundered textiles;

f) preparation and packaging of laundered textiles;

g) handling, transport, and storage of laundered textiles;

h) installation, operation, care, and maintenance of laundry equipment;

i) quality control measures, procedures, and practices;

j) medical device regulatory considerations.

Definitions of terms and a bibliography are also provided in this recommended practice.

1.3 Exclusions

This recommended practice does not cover

a) design or construction criteria for equipment used to process reusable surgical textiles;

NOTE—Performance requirements for washer-disinfectors are provided in ISO 15883-1, 15883-2, and 15883-3. Performance requirements for hospital steam sterilizers are provided in ANSI/AAMI ST8.
b) the application of any sterilization technology or sterility assurance practices;

NOTE—Detailed guidance on steam sterilization and sterility assurance in health care facilities is provided in ANSI/AAMI ST79. Guidance on steam sterilization in health care facilities is also provided in ANSI/AAMI/ISO 17665-1, which addresses industrial steam sterilization as well. ANSI/AAMI ST41 addresses ethylene oxide sterilization and sterility assurance, and ANSI/AAMI ST40 provides guidelines on dry heat sterilization.

c) selection of reusable surgical textiles (see AAMI TIR11);

d) performance standards for reusable surgical textiles (see ANSI/AAMI PB70);

e) surgical textiles labeled for single use.

2 Definitions, symbols, and abbreviations

For the purposes of this standard, the following definitions apply.

2.2 barrier properties: Ability of a material to resist the penetration of liquids (e.g., irrigating fluids, blood, and OPIM).

NOTE: Levels of barrier performance are defined and classified in ANSI/AAMI PB70.

2.3 bioburden: Population of viable microorganisms on or in a product and/or a package.

2.4 bleach step: Use of an oxidizing agent (usually sodium hypochlorite or hydrogen peroxide) within a laundry formula to decompose some types of stains and/or disinfect contaminated textiles.

2.5 boiler: Pressure vessel in which water is heated to be used as hot water or steam.

2.6 break step: Use of alkali salts in a laundry formula to enhance soil removal.

2.7 CDC: Centers for Disease Control and Prevention.

2.8 chemical delivery system: Means by which laundry chemicals are delivered to washing equipment.

2.9 contaminated: State of having been actually or potentially in contact with microorganisms. NOTE—As used in health care, the term generally refers to microorganisms that could be capable of producing disease or infection.

2.10 cool-down: Process of cooling dry, hot textiles, usually inside the drying equipment, to prevent damage, make them comfortable to handle, and minimize fabric wrinkling.

2.11 critical zone: Area of protective apparel or surgical drape where direct contact with blood, body fluids, and OPIM is most likely to occur.

2.12 decontamination: According to OSHA, “the use of physical or chemical means to remove, inactivate, or destroy bloodborne pathogens on a surface or item to the point where they are no longer capable of transmitting infectious particles and the surface or item is rendered safe for handling, use, or disposal.” [29 CFR 1910.1030]

NOTE—The term is generally used in health care facilities to refer to all pathogenic organisms, not just those transmitted by blood.

2.13 device master record (DMR): According to FDA, “a compilation of records containing the procedures and specifications for a finished device.” [21 CFR 820.3(j)]

2.14 disinfection: Process that kills pathogenic and other microorganisms by physical or chemical means.

NOTE—Disinfection destroys most recognized pathogenic microorganisms but not necessarily all microbial forms, such as bacterial spores. Disinfection processes do not ensure the margin of safety associated with sterilization processes.

2.15 drying equipment: Open-pocket, typically horizontal-axis machines that use heat and air flow to dry damp/wet textiles and that are usually controlled either by a microprocessor or a timer. Three types of heat sources are typically used: gas, steam, or electricity.

2.16 EPA: Environmental Protection Agency.

2.17 extraction: Use of physical forces (usually centrifugal or strike/impact) to remove excess water from a wash load prior to drying.
2.18 FDA: Food and Drug Administration.

2.19 finishing step: Last step in the laundry formula, which primarily involves the souring of washed textiles to neutralize their alkalinity and prepare them for extraction and drying.

NOTE—In addition to laundry sour, other finishing chemicals can be added during this step, including softeners, antistatic agents, antimicrobial agents, barrier retreatment additives, and optical brighteners.

2.20 first-in, first-out (FIFO): Stock rotation system in which the oldest product is used first.

2.21 flatwork ironers: Apparatus for the drying, ironing, and folding of textile products, usually flat goods (e.g., sheets, pillowcases).

2.22 flush step: Initial step in a laundering formula and used to remove bulk soils from the load.

2.23 heat exchanger: Apparatus that is capable of transferring heat and that typically strips heat from hot waste water (effluent) before the water enters the sewer system and then transfers that heat to incoming water to preheat it.

2.24 hygienically clean: Free of pathogens in sufficient numbers to cause human illness.

2.25 laundry formula: Assembly of multiple washing steps into a single formula for processing a particular classification of textile. For each step, at least the time, water temperature, water level, and chemical use rate are defined.

2.26 laundry processes: Activities that encompass the handling, washing, and drying of soiled textiles.

2.27 main wash (suds) step: Part of a laundry process in which mechanical action and water flow loosen soils and during which soaps or detergents are usually added to the wash water in order to suspend soils and prevent redeposition.

2.28 medical device: Instrument, apparatus, material, or other article, whether used alone or in combination, including the software necessary for its proper application, intended by the manufacturer to be used for human beings for the purpose of
- diagnosis, prevention, monitoring, treatment, or alleviation of disease;
- diagnosis, monitoring, treatment, alleviation of, or compensation for an injury or handicap;
- investigation, replacement, or modification of the anatomy or of a physiological process; or
- control of conception

and which does not achieve its primary intended action in or on the human body by pharmacological, immunological, or metabolic means, but which may be assisted in its function by such means.

2.29 microorganism: Entity, encompassing bacteria, fungi, protozoa, and viruses, of microscopic size.

2.31 noncritical zone: Area of a surgical gown or drape where direct contact with blood, body fluids, and OPIM is not likely to occur.

2.32 OPIM: Other potentially infectious materials.

2.33 other potentially infectious materials: Any materials, other than blood or body fluids, containing bloodborne pathogens or materials that have been linked with the potential transmission of infectious disease.

2.34 OSHA: Occupational Safety and Health Administration.

2.35 par level: Optimum supply level, usually applicable to inventory, that is based on predetermined quotas established from usage studies.

2.36 personal protective equipment (PPE): According to OSHA, "specialized clothing or equipment worn by an employee for protection against a hazard. General work clothes (e.g., uniforms, pants, shirts or blouses) not intended to function as protection against a hazard are not considered to be personal protective equipment." [29 CFR 1910.1030]

2.37 pills: Small balls of fibers formed on the surface of a fabric as a result of abrasion in wear (adapted from River [1976]).
2.38 **ppm:** Parts per million.

2.39 **pre-sort:** System in which soiled textiles are segregated into various categories of products and materials prior to laundering.

2.40 **post-sort:** System in which soiled textiles are handled as little as possible prior to laundering and then, after laundering, segregated into various categories of products and materials.

2.41 **processing area:** Area of the laundry containing the processing equipment used to decontaminate and clean soiled textiles.

2.42 **pyrogen:** Fever-producing substance.

NOTE—Debris from killed microorganisms can be pyrogenic; limiting the bioburden before sterilization minimizes this debris.

2.43 **reusable surgical textile:** Drape, gown, towel, or sterilization wrapper that is intended to be used in surgery or assist in preparing the surgical team for surgery, that is made from a fabric (usually woven or knitted) or a fabric/film laminate, and that is intended to be used more than once, with appropriate cleaning, decontamination, and sterilization between uses. See also sterilization wrap, surgical drape, surgical gown, surgical towel.

2.44 **rinsing step:** Step in the laundering process used to remove soils and residual laundry chemicals from the load.

2.45 **sharps:** As defined by the U.S. Postal Service (1999), “devices having a projecting cutting edge or fine point that have been used in animal or patient care or treatment, in medical research, or in industrial laboratories, including but not limited to hypodermic needles, syringes (with or without the attached needles), Pasteur pipettes, scalpel blades, blood vials, needles with attached tubing, and culture dishes (regardless of the presence of infectious agents). Also included are other types of broken or unbroken glassware that were in contact with infectious agents, such as used slides or cover slips. The term ‘sharps’ does not include new unused medical devices such as hypodermic needles, syringes, scalpel blades, and so forth.”

2.46 **single-use (disposable) surgical textile:** Drape, gown, towel, or sterilization wrap that is intended to be used in surgery or assist in preparing the surgical team for surgery, that is usually made from a nonwoven fabric (i.e. a sheet, web, or batt of natural and/or manmade fibers or filaments, excluding paper, that have not been converted into yarns and that are bonded to each other by some means) or a nonwoven/film composite, and that is intended to be used only one time and then discarded.

2.47 **soil-sort area:** Area of a laundry facility designated for receiving, retention, handling, and sorting of soiled textiles.

2.48 **soil sorting:** Process of sorting soiled items into defined or established categories so that they can be laundered together.

2.49 **soiled (contaminated) textiles:** Textiles that have had potential contact with blood, body fluids, or OPIM.

2.50 **standard precautions:** A group of infection prevention practices that apply to all patients, regardless of suspected or confirmed diagnosis or presumed infection status. It is based on the principle that all blood, body fluids, secretions, excretions (except sweat), nonintact skin, and mucous membranes may contain transmissible infectious agents. Standard precautions include hand hygiene, and depending on the anticipated exposure, use of gloves, gown, mask, eye protection, or face shield. See also transmission-based precautions.

2.51 **sterile field:** Area created with sterile draping materials where sterile technique is required (e.g., around a surgical site, on a back table, or on a gloving table).

NOTE—For persons around a sterile field in the OR, appropriate attire includes, but might not be limited to, gowns, gloves, face masks, and hair coverings. The need for additional attire is determined by the anticipated exposure to blood, body fluids, and OPIM.

2.52 **sterilization wrap:** According to FDA, “a device intended to be used to enclose another medical device that is to be sterilized by a health care provider. It is intended to allow sterilization of the enclosed medical device and also to maintain sterility of the enclosed device until used.” [21 CFR 880.6850]

2.53 **strike-through:** Passage of a liquid that could contain microorganisms through a barrier product, including its seams and/or points of attachment.

NOTE—The term “barrier products” refers to surgical gowns, other protective apparel, surgical drapes, and sterilization wrappers.
2.54 surgical drape (and drape accessories): As described by FDA, “a device made of natural or synthetic materials intended to be used as a protective patient covering, such as to isolate a site of surgical incision from microbial and other contamination . . .” [21 CFR 878.4370]

2.55 surgical gown: Type of surgical apparel, which is described by FDA as “devices that are intended to be worn by operating room personnel during surgical procedures to protect both the surgical patient and the operating room personnel from transfer of microorganisms, body fluids, and particulate matter. . .” [21 CFR 878.4040]

2.56 surgical towel: An absorbent product, typically made of cotton, that is intended to be used in surgical or other invasive procedures.

2.57 textile: Flexible material comprised of a network of natural or artificial fibers often referred to as thread or yarn. Textiles are formed by weaving, knitting, crocheting, knotting, or pressing fibers together.

2.58 transmission-based precautions: Precautions designed for patients documented or suspected to be infected with highly transmissible or epidemiologically important pathogens for which additional precautions beyond standard precautions are used to interrupt transmission in hospitals. There are three types of transmission-based precautions: contact precautions, airborne precautions, and droplet precautions.

NOTE—Transmission-based precautions are used in addition to standard precautions.

2.59 washing equipment: Machines used to wash textiles by exposing them directly to water, usually at elevated temperatures and with the addition of chemicals. There are several major types of washing equipment:

 - **continuous-batch washer**: Washing machine that allows for a continuous flow of textiles through the process. This equipment uses a number of horizontal-axis modules (usually 7 to 16) placed in sequence, each of which has a predefined function (step in the washing process) for each formula used. The time in each module is usually set between 2 and 3 minutes, and the water is reused in a counterflow process (i.e. clean water enters the last module and is reused until it reaches the first module). These units are controlled by a microprocessor or card unit.

 - **home washers**: Machines that allow for batch processing of textiles. This equipment usually is of a vertical-axis design and has standard (nonprogrammable) wash cycles.

 NOTE—This equipment is not appropriate for processing most types of health care textiles. See 6.1.

 - **open-pocket/split-pocket washers**: Washing machines that allow for batch processing of textiles. This equipment is typically of a horizontal-axis design, has an open or split compartment that allows the textiles and wash liquor to intermingle freely in the chamber, and is controlled either by a microprocessor or a card unit.

 - **washer–extractors**: Machines capable of performing the functions of (a) washing soiled textiles through the combination of time, mechanical action, temperature, and chemical action, and (b) extracting (or removing) a large percentage of water from a washed load before further processing. Extraction is generally accomplished by either high-speed cylinder rotation or high-speed mechanical action (shaking). Washer–extractors are typically controlled by a microprocessor or a card unit.

2.60 water heater: Apparatus used to heat incoming water to the temperatures needed for processing.

2.61 water reuse system: System used to selectively capture and reuse water.

2.62 water softener: Additive used in the water treatment process to remove dissolved minerals (usually calcium, magnesium, or iron) from incoming water.