Microbiological aspects of ethylene oxide sterilization

Abstract: Addresses various microbiological aspects of the development and validation of an ethylene oxide sterilization process. Does not address the various factors that can have an effect on the bioburden of the product and on the sterilization process. Provides additional guidance to ANSI/AAMI/ISO 11135:2007 and ANSI/AAMI/ISO TIR11135–2:2008 for medical device manufacturers, including those that use contract sterilization facilities or contract sterilization operations.

Keywords: sterilization, microbiological aspects, validation, ethylene oxide, bioburden, performance qualification
AAMI Technical Information Report

A technical information report (TIR) is a publication of the Association for the Advancement of Medical Instrumentation (AAMI) Standards Board that addresses a particular aspect of medical technology.

This document is not an American National Standard, and the material contained herein is not normative in nature.

Although the material presented in a TIR may need further evaluation by experts, releasing the information is valuable because the industry and the professions have an immediate need for it.

A TIR differs markedly from a standard or recommended practice, and readers should understand the differences between these documents.

Standards and recommended practices are subject to a formal process of committee approval, public review, and resolution of all comments. This process of consensus is supervised by the AAMI Standards Board and, in the case of American National Standards, by the American National Standards Institute.

A TIR is not subject to the same formal approval process as a standard. However, a TIR is approved for distribution by a technical committee and the AAMI Standards Board.

Another difference is that, although both standards and TIRs are periodically reviewed, a standard must be acted on—reaffirmed, revised, or withdrawn—and the action formally approved usually every five years but at least every 10 years. For a TIR, AAMI consults with a technical committee about five years after the publication date (and periodically thereafter) for guidance on whether the document is still useful—that is, to check that the information is relevant or of historical value. If the information is not useful, the TIR is removed from circulation.

A TIR may be developed because it is more responsive to underlying safety or performance issues than a standard or recommended practice or because achieving consensus is extremely difficult or unlikely. Unlike a standard, a TIR permits the inclusion of differing viewpoints on technical issues.

CAUTION NOTICE: This AAMI TIR may be revised or withdrawn at any time. Because it addresses a rapidly evolving field or technology, readers are cautioned to ensure that they have also considered information that may be more recent than this document.

All standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Comments on this technical information report are invited and should be sent to AAMI, Attn: Standards Department, 1110 N. Glebe Road, Suite 220, Arlington, VA 22201-4795.

Published by
Association for the Advancement of Medical Instrumentation
1110 N. Glebe Road, Suite 220
Arlington, VA 22201-4795
www.aami.org

© 2010 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

Publication, reproduction, photocopying, storage, or transmission, electronically or otherwise, of all or any part of this document without the prior written permission of the Association for the Advancement of Medical Instrumentation is strictly prohibited by law. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, complete the reprint request form at www.aami.org or contact AAMI at 1110 N. Glebe Road, Suite 220, Arlington, VA 22201-4795. Phone: (703) 525-4890; Fax: (703) 525-1067.

Printed in the United States of America

ISBN 1-57020-374-1
Contents

Glossary of equivalent standards... v

Committee representation.. vii

Foreword... x

1 Scope... 1

2 Terms and definitions... 1

3 Process and equipment characterization.. 1

3.1 Sterilization equipment.. 1

3.2 Process characterization — Physical parameters.. 1

3.2.1 Introduction .. 1

3.2.2 EO concentration... 1

3.2.3 Relative humidity.. 2

3.2.4 Temperature.. 2

3.2.5 EO exposure time.. 2

4 Process definition.. 3

4.1 Considerations for process definition.. 3

4.1.1 Ethylene oxide exposure parameters.. 3

4.1.2 Product packaging... 3

4.1.3 Process development methods.. 3

4.1.4 Sampling considerations for process development studies... 3

4.1.5 Methods for microbial enumeration and fraction negative studies in a pilot or a production chamber..... 4

4.1.5.1 Enumeration or fraction negative study approaches.. 4

4.1.5.2 Establishing relationship between pilot chamber and production .. 5

4.1.5.3 Parameter... 5

4.2 Methods for process definition.. 6

4.2.1 Methods for estimating cycle lethality.. 6

4.2.1.1 Direct enumeration.. 6

4.2.1.2 Fraction-negative method... 6

4.2.2 Biological indicator/bioburden approach... 7

4.2.3 Overkill methods.. 8

4.2.3.1 Half-cycle method.. 8

4.2.3.2 Cycle calculation approach.. 9

4.2.4 Other approaches—Absolute bioburden method of cycle development.. 10

4.2.4.1 Bioburden isolates approach... 10

4.2.4.2 Product sample approach.. 10

4.3 Sterilization process definition troubleshooting.. 11

4.3.1 Obtaining all positives.. 11

4.3.1.1 Methods to obtain all positives with a new process.. 11

4.3.1.2 Methods to obtain all positives in an existing cycle... 11

4.3.2 Obtaining a linear slope in the lethality curve.. 11

4.3.3 Obtaining all negatives.. 11

4.4 Process challenge devices.. 12

4.4.1 Types of PCDs .. 12

4.4.1.1 Internal PCDs (IPCDs) .. 12

4.4.1.2 External PCDs (EPCDs).. 12

4.4.2 Appropriateness of the PCD.. 13

4.4.3 Examples of PCDs .. 13

4.4.3.1 Examples of internal PCDs... 13

4.4.3.2 Examples of external PCDs that have been used throughout the industry..................................... 13

4.4.3.3 PCDs for product families.. 13

5 Validation.. 14

5.1 Microbiological performance qualification (MPQ)... 14

5.1.1 General considerations... 14

5.1.2 Validation cycle selection criteria.. 14
5.1.3 Placement and handling of PCDs, test samples, and sensors ...14
5.1.3.1 General..14
5.1.3.2 Cycle monitoring equipment ..14
5.1.3.3 Product handling, shipping, and testing ...15
5.2 Sterilization loads—general considerations ...15
5.2.1 Packaging ..15
5.2.2 Full and partial loads ..16
5.2.3 Mixed loads ..16
5.2.4 Reuse of loads ...16
5.3 Simulation of anticipated process conditions ..16
5.4 Release of validation loads ..16
5.5 Release of small batches or lots ..17
6 Maintaining process effectiveness ..17
6.1 Failure investigation ..17
6.1.1 Sterilization process or equipment issues ..17
6.1.1.1 Potential process differences ..17
6.1.1.2 Potential equipment differences ...18
6.1.1.3 Potential process utility differences ...18
6.1.2 Product issues ..18
6.1.2.1 Product design or materials ..18
6.1.2.2 Product bioburden ..18
6.1.3 Microbiological testing issues ...18
6.1.3.1 Test laboratory..18
6.1.3.2 Biological Indicators (BIs) ...18
6.2 Requalification ..19
Bibliography ..20
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. For each International Standard that has been adopted by AAMI (and ANSI), the table below gives the corresponding U.S. designation and level of equivalency to the International Standard. NOTE: Documents are sorted by international designation.

Other normatively referenced International Standards may be under consideration for U.S. adoption by AAMI; therefore, this list should not be considered exhaustive.

<table>
<thead>
<tr>
<th>International designation</th>
<th>U.S. designation</th>
<th>Equivalency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Corrigendum 1 and 2</td>
<td>ANSI/AAMI ES60601-1:2005/C1:2009 (amdt)</td>
<td>C1 Identical to Corrigendum 1 & 2</td>
</tr>
<tr>
<td>International designation</td>
<td>U.S. designation</td>
<td>Equivalency</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ISO 17665-1:2006</td>
<td>ANSI/AAMI/ISO 17665-1:2006 Identical (with inclusions)</td>
<td></td>
</tr>
</tbody>
</table>
Committee representation

Association for the Advancement of Medical Instrumentation

Industrial Ethylene Oxide Sterilization Working Group

This technical information report (TIR) was developed by the Association for the Advancement of Medical Instrumentation (AAMI) Industrial Ethylene Oxide Sterilization Working Group under the auspices of the AAMI Sterilization Standards Committee. Working Group approval of the TIR does not necessarily imply that all committee members voted for its approval.

At the time this document was published, the AAMI Industrial Ethylene Oxide Sterilization Working Group had the following members:

Cochairs
Charles Cogdill, Boston Scientific Corporation
Gerry A. O'Dell, MS, Gerry O'Dell Consulting

Members
Anne F. Booth, MS, Conmed Corp
Lloyd Brown, Covidiex
Tim Carlson, Becton Dickinson & Company
Bradley J. Catalone, PhD, Olympus America Inc.
Dennis E. Christensen, BS, Process Challenge Devices LLC
Charlie Christianson, STJude Medical Inc.
Charles Cogdill, Boston Scientific Corporation
Gary N. Cranston, Consulting & Technical Services/PCS
Elaine Daniell, CR Bard
Douglas D. Davie, Sterilization Validation Services
Dardie Diage, Direct Flow Medical Inc.
Shawn A. Doyle, Sterilator Company Inc.
William J. FitzGerald, PE, FitzGerald & Associates Ltd
Dan B. Floyd, RM, Nelson Laboratories Inc.
Zory R. Glaser, PhD MPH CSPDM, Independent Expert
Arthur G. Harris, Cook Inc.
Deborah A. Havlik, Hospira Worldwide Inc.
Danny Hutson, Cardinal Health (MP&S)
Jim Kaiser, Bausch & Lomb Inc.
Bert Kingsbury, Terumo Medical Corporation
Carolyn L. Kinsley, LexaMed
Karen A. Kowalczyk, Centurion Sterilization Services
Christine Loshbaugh, Edwards LifeSciences
Ted May, Andersen Products Inc.
David Ford McGoldrick, BS, Abbott Laboratories
Craig A. Meadows, Medtronic Inc.
Joseph M. Mello, Ethide Laboratories Inc.
Russell D. Mills, Zimmer Inc.
Gary Mitchel, PE, Johnson & Johnson
Sarah A. Mowitt, Independent Expert
Gerry A. O'Dell, MS, Gerry O'Dell Consulting
Ken Paddock, Baxter Healthcare Corporation
Dave Parente, NAMSA
Manuel Saavedra, Jr., Kimberly-Clark Corporation
Zenius V. Seliokas, Stericon Inc.
Jon Seulean, CaridianBCT Sterilization Services Inc.
Barb Smith, Getinge USA
Bill South, Steris Corporation
Ralph Stick, WuXi AppTec
Radhakrishna S. Tirumalai, US Pharmacopeia Convention Inc.
Steven E. Turti, FDA/CDRH
Jason Voisinet, Ethox International Inc.
Craig A. Wallace, 3M Healthcare
P. Richard Warburton, ChemDAQ Inc.
Richard L. Weisman, Fresenius Medical Care Renal Therapies Group
Casimir John Woss, PhD, Alcon Laboratories Inc.
AAMI also acknowledges the Task Group, comprised of the following members, for its special contribution in the development of this document:

Task Group Leader
Craig Wallace, 3M Healthcare

Task Group Members
Lloyd Brown, Covidien
Delores Bruce, Steris Corporation
Deborah Havlik, Hospira Worldwide, Inc.
Carolyn Kinsley, LexaMed
Tyrone Rouse, Kimberly-Clark Corporation
Matthew Russell, Cook Inc.
David Silov, Zimmer Inc.
Larry Talapa, 3M Healthcare

At the time this document was published, the **AAMI Sterilization Standards Committee** had the following members:

Cochairs
Victoria M. Hitchins, PhD, FDA/CDRH
William E. Young, Boston Scientific Corporation

Members
Trabue D. Bryans, WuXi AppTec
Peter A. Burke, PhD, Steris Corporation
Nancy Chobin, RN CSPDM, Independent Expert
Charles Cogdill, Boston Scientific Corporation
Ramona Conner, RN MSN CNOR, Association of Perioperative Registered Nurses
Jacqueline Daley, Association for Professionals in Infection Control and Epidemiology
Kimbrell Darnell, CR Bard
Lisa Foster, Sterigenics International
Joel R. Gorski, PhD, NAMSA
Deborah A. Havlik, Hospira Worldwide Inc.
Victoria M. Hitchins, PhD, FDA/CDRH
Danny Hutson, Cardinal Health (MP&S)
Lois Atkinson Jones, MS, Independent Expert
Susan G. Klacik, CCSMC FCS ACE, IAHCSMM
Byron J. Lambert, PhD, Abbott Laboratories
Colleen Patricia Landers, RN, Canadian Standards Association
Lisa N. Macdonald, Becton Dickinson & Company
Jeff Martin, Alcon Laboratories Inc.
Patrick J. McCormick, PhD, Bausch & Lomb Inc.
Rainer Newman, Johnson & Johnson
Janet M. Prust, 3M Healthcare
Nancy Rakiewicz, Ethox International Inc.
Michael H. Scholla, DuPont Nonwovens
Mark Seybold, Baxter Healthcare Corporation
Andrew Sharavara, PhD, Propper Manufacturing Co Inc.
Mark N. Smith, Getinge USA
William N. Thompson, Covidien
James L. Whitby, MA MB FRCP, Independent Expert
Martell Kress Winters, BS SM, Nelson Laboratories Inc.

Alternates
Lloyd Brown, Covidien
Glenn W. Calvert, Becton Dickinson & Company
Dave Dion, Cardinal Health (MP&S)
Steven J. Elliott, WuXi AppTec
Thomas J. Frazier, Johnson & Johnson
Kathy Hoffman, Sterigenics International
Jim Kaiser, Bausch & Lomb Inc.
Joseph J. Lasich, BS, Alcon Laboratories Inc.
Chiu S. Lin, PhD, FDA/CDRH
Natalie Lind, IAHCSMM
Ralph Makinen, Boston Scientific Corporation
Mary S. Mayo, CR Bard
David Ford McGoldrick, BS, Abbott Laboratories
Jerry R. Nelson, PhD, Nelson Laboratories Inc.
Karen Polkinghorne, DuPont Nonwovens
Mike Sadowski, Baxter Healthcare Corporation
John R. Scoville, Jr., Steris Corporation
Jason Voisinet, Ethox International Inc.
Craig A. Wallace, 3M Healthcare
Valerie Welter, Hospira Worldwide Inc.
William E. Young, Boston Scientific Corporation

NOTE—Participation by federal agency representatives in the development of this technical information report does not constitute endorsement by the federal government or any of its agencies.
Foreword

This document is part of a series of technical information reports (TIRs) intended for use in conjunction with ANSI/AAMI/ISO 11135-1:2009. The other reports in the series are listed below:

— AAMI TIR14:2009, Contract sterilization using ethylene oxide;
— AAMI TIR15:2009, Physical aspects of ethylene oxide sterilization;
— AAMI TIR28:2009, Product adoption and process equivalence for ethylene oxide sterilization; and

The original TIR16, along with other AAMI TIRs, provided additional guidance to the 1994 edition of the industrial EO sterilization standard 11135, which was revised in 2007 under a new designation, ANSI/AAMI/ISO 11135-1:2007, Sterilization of health care products—Ethylene oxide—Part 1: Requirements for the development, validation and routine control of a sterilization process for medical devices. In 2008, ISO published its own guidance document for the 11135 standard, ISO/TR 11135-2:2008, Sterilization of health care products—Ethylene oxide—Part 2: Guidance on the application of ISO 11135-1, which was based to a great extent on the earlier AAMI technical information reports. Correspondingly, the AAMI Industrial EO sterilization working group is updating its TIRs to take into account changes to the 11135 standard as well as to avoid redundancy with ANSI/AAMI/ISO TIR11135-2:2008.

This TIR provides guidance related to the microbiological aspects of EO sterilization that is typically not covered in depth, or at all, in the existing guidance documents for EO sterilization. It is designed to provide information that will assist in design, qualification, and routine processing of EO sterilization processes. This TIR condenses pertinent information that may be available in a variety of sources in one location and is based on practices that have been found to be used successfully within the United States. This TIR contains guidelines that are not intended to be absolute or to apply in all circumstances. One should use judgment in applying the information in this TIR.

As used within the context of this document, “should” indicates that among several possibilities one is recommended as particularly suitable without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but not prohibited. “May” is used to indicate that a course of action is permissible within the limits of the TIR. “Can” is used as a statement of possibility and capability. “Must” is used only to describe “unavoidable” situations, including those mandated by government regulations. See also the NOTE on Page 1.

Suggestions for improving this technical information report are invited. Comments and suggested revisions should be sent to AAMI, 4301 Fairfax Drive, Suite 301, Arlington, VA 22203.

NOTE—This foreword does not contain provisions of AAMI TIR16:2009, Microbiological aspects of ethylene oxide sterilization, but it does provide important information about the development and intended use of the document.
Microbiological aspects of ethylene oxide sterilization

NOTE—This technical information report is not a standard, and the material contained herein is not normative in nature. The committee has used the term "shall" in a few instances, based on their knowledge of requirements contained in relevant standards and regulatory requirements.

1 Scope

This technical information report (TIR) addresses various microbiological aspects of the development and validation of an ethylene oxide (EO) sterilization process. It does not cover the various factors that can have an effect on the bioburden of the product and on the sterilization process. This TIR provides additional guidance to ANSI/AAMI/ISO 11135-1:2007 and ANSI/AAMI/ISO TIR11135-2:2008 for medical device manufacturers, including those that use contract sterilization facilities or contract sterilization operations.

Although the information presented was developed for application to medical devices, the content of this guideline may also be applied to other relevant products or materials.

2 Terms and definitions

For the purposes of this TIR, the terms and definitions in ANSI/AAMI/ISO 11135–1 and ANSI/AAMI/ISO TIR11135–2 and the following apply.

2.1 compromised tissue: Skin or mucous membrane that has been intentionally or accidentally opened, exposed, or breached.

2.2 inoculated carrier: Supporting material on or in which a defined number of test organisms has been deposited.

3 Process and equipment characterization

3.1 Sterilization equipment

Guidelines for equipment selection can be found in AAMI TIR15:2009 and EN 1422. Careful selection of the sterilizing equipment and development of the facility design will enable a manufacturer to process a product safely and effectively.

3.2 Process characterization — Physical parameters

3.2.1 Introduction

The variables that have a significant effect on the lethality of an ethylene oxide (EO) sterilization process are ethylene oxide (EO) concentration, relative humidity (RH), temperature, and EO exposure time.

EO concentration and RH may be calculated as prescribed in AAMI TIR15:2009, or they may be directly measured. It is recommended that evacuation and injection rates be established to define their effect on the cycle lethality throughout the program. The use of controlled evacuation and injection rates minimizes the potential for package and product damage. These rates should be incorporated in the final process specifications as appropriate for chamber parameters. It is also important to remember that the actual depth and rate of evacuations might be different for the air-removal versus the sterilant-removal phases, because the product and packaging have been exposed to increased temperature, humidity, and sterilant levels prior to the sterilant-removal phase.

3.2.2 EO concentration

Common practice is to develop and validate cycles using an EO concentration ranging from 400 to 650 milligrams per liter (mg/L), because concentrations in this range have been found to achieve microbiological lethality for most products within a reasonable and practical exposure time. When lower EO concentrations are necessary due to product or process considerations, the exposure time may need to be increased to achieve the same lethality; however, the time increase may be mitigated if the temperature of the process can be increased sufficiently.