Non-invasive blood pressure motion artifact - Testing and evaluation of NIBP device performance in the presence of motion artifact
Non-invasive blood pressure motion artifact – Testing and evaluation of NIBP device performance in the presence of motion artifact

Approved 16 November 2012 by
Association for the Advancement of Medical Instrumentation

Abstract: This report is intended to provide information on the sources and effects of artifact noise in non-invasive blood pressure measurement. The report also includes an overview of potential evaluation methods for the qualification and classification of device performance when varying levels of artifact noise are present during an NIBP cycle.

Keywords: NIBP, non-invasive blood pressure, artifact noise, motion artifact, motion testing, simulated artifact noise
AAMI Technical Information Report

A technical information report (TIR) is a publication of the Association for the Advancement of Medical Instrumentation (AAMI) Standards Board that addresses a particular aspect of medical technology.

Although the material presented in a TIR may need further evaluation by experts, releasing the information is valuable because the industry and the professions have an immediate need for it.

A TIR differs markedly from a standard or recommended practice, and readers should understand the differences between these documents.

Standards and recommended practices are subject to a formal process of committee approval, public review, and resolution of all comments. This process of consensus is supervised by the AAMI Standards Board and, in the case of American National Standards, by the American National Standards Institute.

A TIR is not subject to the same formal approval process as a standard. However, a TIR is approved for distribution by a technical committee and the AAMI Standards Board.

Another difference is that, although both standards and TIRs are periodically reviewed, a standard must be acted on—reaffirmed, revised, or withdrawn—and the action formally approved usually every five years but at least every 10 years. For a TIR, AAMI consults with a technical committee about five years after the publication date (and periodically thereafter) for guidance on whether the document is still useful—that is, to check that the information is relevant or of historical value. If the information is not useful, the TIR is removed from circulation.

A TIR may be developed because it is more responsive to underlying safety or performance issues than a standard or recommended practice, or because achieving consensus is extremely difficult or unlikely. Unlike a standard, a TIR permits the inclusion of differing viewpoints on technical issues.

CAUTION NOTICE: This AAMI TIR may be revised or withdrawn at any time. Because it addresses a rapidly evolving field or technology, readers are cautioned to ensure that they have also considered information that may be more recent than this document.

All standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Comments on this technical information report are invited and should be sent to AAMI, Attn: Standards Department, 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633.

Published by
Association for the Advancement of Medical Instrumentation
4301 N. Fairfax Drive, Suite 301
Arlington, VA 22203-1633
www.aami.org

© 2013 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

Publication, reproduction, photocopying, storage, or transmission, electronically or otherwise, of all or any part of this document without the prior written permission of the Association for the Advancement of Medical Instrumentation is strictly prohibited by law. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, complete the reprint request form at www.aami.org or contact AAMI at 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633. Phone: +1-703-525-4890; Fax: +1-703-525-1067.

Contents

Glossary of equivalent standards .. v
Committee representation .. vi
Acknowledgment .. vii
Foreword ... viii
Introduction .. ix

1 Scope .. 1
 1.1 General .. 1
 1.2 Exclusions ... 1

2 Normative references .. 1

3 Terms and definitions ... 1

4 Sources of Artifact Noise ... 3
 4.1 Patient induced .. 3
 4.2 Patient ambulation .. 4
 4.3 Transport ... 4
 4.4 Physiologic artifact .. 4
 4.5 Summary ... 5

5 Effect of Artifact on NIBP readings .. 6
 5.1 Summary of literature ... 6
 5.1.1 Simulation and Testing ... 6
 5.1.2 Transport ... 6
 5.1.3 Exercise Testing .. 6
 5.1.4 Ambulatory Blood Pressure Monitoring (ABPM) ... 6
 5.2 Magnitude of common artifact ... 7
 5.3 Spectral content of common artifact ... 7
 5.4 Examples of common artifact ... 7
 5.4.1 Arm reposition .. 7
 5.4.2 Tremor .. 9
 5.4.3 Transport (Helicopter) .. 11
 5.4.4 Transport (Ground Ambulance) ... 13

6 Relevance of existing standards and protocols .. 17
 6.1 AAMI SP10:2008 ... 17
 6.2 CEN/EN 1060-4 ... 17
 6.5 ANSI/AAMI/ISO 81060-2:2009 .. 17
 6.6 BHS protocol for the evaluation of blood pressure measurement devices .. 17
 6.7 Summary of existing standards ... 18

7 Working group scope and goals .. 18
 7.1 WG Scope ... 18
 7.2 General Goals .. 18

8 Motion artifact performance evaluation methods .. 19
 8.1 Challenges .. 19
 8.2 General concepts for motion artifact evaluation ... 19
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. AAMI maintains a current list of each International Standard that has been adopted by AAMI (and ANSI). Available on the AAMI website at the address below, this list gives the corresponding U.S. designation and level of equivalency to the International Standard.

Committee representation

Association for the Advancement of Medical Instrumentation

Sphygmomanometer Committee

This AAMI Technical Information Report (TIR) was developed by the NIBP Motion Artifact Task Group under the auspices of the AAMI Sphygmomanometer Committee. Approval of the TIR does not necessarily mean that all committee members voted for its approval.

At the time this document was published, the AAMI Sphygmomanometer Committee had the following members:

Chairs: Bruce Alpert, MD
 Bruce Friedman, DEng

Members: Bruce Alpert, MD, UTHSC College of Medicine
 Jim Brown, Colder Products Company
 Richard A. Dart, MD, Independent Expert
 Donald J. Fournier, Draeger Medical Systems Inc.
 Gerhard Frick, Microlife Services AG
 Bruce Friedman, Deng, GE Healthcare
 David Gallick, Sun Tech Medical
 Jeff Gilham, Spacelabs Medical Inc.
 John W. Graves, MD, Independent Expert
 Clarence E. Grim, MS MD, Independent Expert
 Michael Gutkin, MD
 Charles S. Ho, PhD, FDA/CDRH
 Tsutomu Ichikawa, Omron Healthcare Co Ltd
 Jin Jilek, Independent Expert
 Jack M. Millay, Accurate Blood Pressure
 Charles C. Monroe, Philips Electronics North America
 Bruce Z. Morgenstern, MD, Independent Expert
 Ronald Portman, Independent Expert
 David Quinn, Welch Allyn Inc.
 William B. White, MD, University of Connecticut School of Medicine
 Colin Wu, NHLBI

Alternates: Greg Downs, Spacelabs Medical Inc.
 David Osborn, Philips Electronics North America
 John Seller, Welch Allyn Inc.
 Charles B. Setzer, Sun Tech Medical
 Osamu Shirasaki, Omron Healthcare Co Ltd
 Sandy Weinninger, PhD, FDA/CDRH

NOTE—Participation by federal agency representatives in the development of this technical information report does not constitute endorsement by the federal government or any of its agencies.
Acknowledgment

The AAMI Sphygmomanometer Committee would like to thank the following members of the NIBP Motion Artifact Task Group members for their contributions to drafting and reviewing this report: David Quinn, Welch Allyn (task group leader); Bruce Alpert, MD, UTHSC College of Medicine; Khalid Barazanji, PhD, US Army; Richard A. Dart, MD Marshfield Clinic Research Foundation; Robert E. Eshelman, US Army; Bruce Friedman, Deng GE Healthcare; Rachel Kinsler, US Army; Paul Matsumura, Suntech Medical; Charles C. Monroe, Philips Electronics North America; and Robert Smith, MD.
Foreword

This technical information report (TIR) was developed by the NIBP Motion Artifact Task Group under the auspices of the AAMI Sphygmomanometer Committee.

It is widely recognized that NIBP devices are used in environments where there are frequent occurrences of artifact noise during measurement. Existing standards provide methodology to evaluate the accuracy and performance of NIBP devices in a clinical environment without artifact noise. This gap between common device evaluation methodology and common use case was identified by the AAMI Sphygmomanometer Committee as an important issue to purchasers and users of NIBP devices.

The objective of this TIR is to provide an overview of the work done by the AAMI NIBP Motion Artifact Task Group to date and to serve as supporting information for the development of future US and/or international standards in the area of NIBP with regard to motion tolerance.

The concepts incorporated herein are not inflexible or static. They are reviewed periodically to assimilate new data and advances in technology.

As used within the context of this document, "should" indicates that among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but is not prohibited. "May" is used to indicate that a course of action is permissible within the limits of the recommended practice. "Can" is used as a statement of possibility and capability. Finally, "must" is used only to describe "unavoidable" situations, including those mandated by government regulation.

Suggestions for improving this TIR are invited. Comments and suggested revisions should be sent to Technical Programs, AAMI, 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633.
Introduction

Healthcare is delivered in a wide variety of environments and clinical situations. Medical devices, in general, are required to perform safely and effectively in all of the environments in which they are intended for use. Some use environments are inherently favorable to medical device longevity and performance; others provide situations in which devices are challenged to perform effectively. One such challenge for the measurement of many physiological parameters is artifact that is either present along with the signal to be measured or induced by the patient, clinician, or healthcare environment directly to the device. Patient movement, either voluntary or involuntary, can mask a physiological signal to a degree that inhibits a medical device from providing an accurate reflection of the true physiologic parameter.

This technical information report provides information on the potential sources of motion artifact noise in manual and automated sphygmomanometers in common professional healthcare environments. While it is not possible to anticipate all potential sources of artifact in these environments, this report will identify general categories and types of artifact noise that are known to interfere with the physiologic signals normally interrogated to estimate blood pressure non-invasively.

The report also provides potential device evaluation strategies that can indicate a sphygmomanometer's performance when such common types of artifact noise are present. It is the desire of the AAMI Sphygmomanometer Committee that this work will eventually lead to standardized evaluation methods. These methods would provide clinicians with device performance information that is relevant to the particular environments in which they deliver healthcare and allow them to choose a device that has effective and acceptable levels of accuracy and performance in those environments. It is a challenge to devise standardized test methods for NIBP devices because of the complexities of an accurate reference determination for a given subject and the varying types of proprietary technology employed by different manufacturers of sphygmomanometer devices.
This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Non-invasive blood pressure motion artifact - Testing and evaluation of NIBP device performance in the presence of motion artifact

1 Scope

1.1 General

This technical information report (TIR) discusses the potential sources of motion artifact noise affecting manual and automated sphygmomanometers in common professional healthcare environments, as well as potential standardized device evaluation methods for determining the performance of these sphygmomanometers when artifact noise is present. Devices in the scope of this TIR include manual sphygmomanometers, oscillometric devices, auscultatory devices, and devices that utilize doppler ultrasound in the estimation of Systolic and Diastolic arterial blood pressure.

1.2 Exclusions

This TIR does not cover artifact noise that is not patient or motion induced. For example, radio frequency interference is outside the scope of this document and is adequately addressed in other US and international regulations.

2 Normative references

The following referenced documents are relevant for the application of this report and are standards publications that are currently utilized in the evaluation of NIBP devices:

- BHS 1993, The British Hypertension society protocol for the evaluation of blood pressure measurement devices
- EN 1060-4:2004, Non-invasive sphygmomanometers – Test procedures to determine the overall system accuracy of automated non-invasive sphygmomanometers