This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Environmental Monitoring For Terminally Sterilized Healthcare Products

Abstract: This TIR assists in establishing an environmental monitoring program that is meaningful, manageable and defendable, and provides guidance to avoid adverse environmental conditions during the manufacture of terminally sterilized healthcare products.

Keywords: sterilization, microbiological, particulate, sampling
AAMI Technical Information Report

A technical information report (TIR) is a publication of the Association for the Advancement of Medical Instrumentation (AAMI) Standards Board that addresses a particular aspect of medical technology. Although the material presented in a TIR may need further evaluation by experts, releasing the information is valuable because the industry and the professions have an immediate need for it.

A TIR differs markedly from a standard or recommended practice, and readers should understand the differences between these documents.

Standards and recommended practices are subject to a formal process of committee approval, public review, and resolution of all comments. This process of consensus is supervised by the AAMI Standards Board and, in the case of American National Standards, by the American National Standards Institute.

A TIR is not subject to the same formal approval process as a standard. However, a TIR is approved for distribution by a technical committee and the AAMI Standards Board.

Another difference is that, although both standards and TIRs are periodically reviewed, a standard must be acted on—reaffirmed, revised, or withdrawn—and the action formally approved usually every five years but at least every 10 years. For a TIR, AAMI consults with a technical committee about five years after the publication date (and periodically thereafter) for guidance on whether the document is still useful—that is, to check that the information is relevant or of historical value. If the information is not useful, the TIR is removed from circulation.

A TIR may be developed because it is more responsive to underlying safety or performance issues than a standard or recommended practice, or because achieving consensus is extremely difficult or unlikely. Unlike a standard, a TIR permits the inclusion of differing viewpoints on technical issues.

CAUTION NOTICE: This AAMI TIR may be revised or withdrawn at any time. Because it addresses a rapidly evolving field or technology, readers are cautioned to ensure that they have also considered information that may be more recent than this document.

All standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Comments on this technical information report are invited and should be sent to AAMI, Attn: Standards Department, 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633

Published by
Association for the Advancement of Medical Instrumentation
4301 N. Fairfax Drive, Suite 301
Arlington, VA 22203-1633
www.aami.org
© 2014 by the Association for the Advancement of Medical Instrumentation
All Rights Reserved

Publication, reproduction, photocopying, storage, or transmission, electronically or otherwise, of all or any part of this document without the prior written permission of the Association for the Advancement of Medical Instrumentation is strictly prohibited by law. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, complete the reprint request form at www.aami.org or contact AAMI at 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633. Phone: +1-703-525-4890; Fax: +1-703-525-1067.

Printed in the United States of America

Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. AAMI maintains a current list of each International Standard that has been adopted by AAMI (and ANSI). Available on the AAMI website at the address below, this list gives the corresponding U.S. designation and level of equivalency to the International Standard.

www.aami.org/standards/glossary.pdf
Committee representation

Association for the Advancement of Medical Instrumentation
Microbiological Methods Working Group

This AAMI technical information report was developed and approved by the AAMI Microbiological Methods Working Group under the auspices of the AAMI Sterilization Standards Committee.

At the time this document was published, the AAMI Microbiological Methods Working Group had the following members:

Chairs:
- M Carolyn Braithwaite, Terumo BCT
- Martell Kress Winters, BS SM, Nelson Laboratories Inc.

Members:
- Michael J. Brady, PhD, Toxikon Corporation
- Rachel Brewer, Moog Medical Devices
- Trabue D. Bryans, BryKor LLC
- Sandra Budden, Alcon Laboratories Inc.
- Claudia Camp, Stryker Instruments Division
- Lisa Cook, B Braun of America Inc.
- Gary N. Cranston, Consulting & Technical Services/PCS
- Emily Craven, Nordion Inc.
- Kimbrell Darnell, CR Bard
- Douglas D. Davie, Sterilization Validation Services
- David A. Domínguez, CareFusion
- Mary Ann Drosnock, MS, Olympus America Inc.
- Sylvie Dufresne, PhD, TSO3 Inc.
- Gordon M. Ely, WuXi AppTec Inc.
- Niki Fidopiastis, Sterigenics International
- Victoria M. Hitchins, PhD, FDA/CDRH
- Beth Jacques, RAC, Steris Corporation
- Nupur Jain, Intuitive Surgical Inc.
- Jo Ann Barbara Maltais, PhD, Maltais Consulting
- Amy Karren, WL Gore & Associates Inc.
- David King, Tandem Diabetes Care Inc.
- Carolyn L. Kinsley, LexaMed Ltd
- Richard Lenz, Medtronic Inc WHQ Campus
- Ronald G. Lulich, 3M Healthcare
- Jo Ann Barbara Maltais, PhD, Maltais Consulting
- David Ford McGoldrick, BS, Abbott Laboratories
- Joseph M. Mello, Ethide Laboratories Inc.
- Russell D. Mills, GE Healthcare
- Gerry A. O'Dell, MS, Gerry O'Dell Consulting
- David Opie, PhD, Noxilizer Inc.
- Dave Parente, Ecolab
- Matthew Russell, Cook Inc.
- Manuel Saavedra, Jr., Kimberly-Clark Corporation

© 2014 Association for the Advancement of Medical Instrumentation • AAMI TIR52:2014
Michael J. Schoene, Bausch & Lomb Inc.
Harry L. Shaffer, Sterilization Consulting Services
Sopheak Sru, MPH SM(NRCM), Quality Tech Services Inc.
Radhakrishna S. Tirumalai, US Pharmacopeia Convention Inc.
Donald Tumminelli, HIGHPOWER Validation Testing & Lab Services Inc.
Evelyn Noemi Villalobos, Edwards LifeSciences
Scott Wasiluk, Covidien
Richard L. Weisman, Fresenius Medical Care Renal Therapies Group
Cheryl Work, Becton Dickinson & Company

Alternates:
Nancy Blaszko, Sterigenics International
Marjean Boyer, Fresenius Medical Care Renal Therapies Group
Charlie Christianson, St Jude Medical Inc.
J.C Fulghum, Hospira Worldwide Inc.
Scott A. Giraud, Medtronic Inc. WHQ Campus
Fatima Hasanain, Nordion Inc.
Nichole Jackson, Ecolab
Wade Johnston, Kimberly-Clark Corporation
Chris Kobus, GE Healthcare
Sharon K. Lappalainen, FDA
Helene Leblond, TSO3 Inc.
Reynaldo Lopez, Cardinal Health (MP&S)
Antonio Lopez-Feliciano, CareFusion
Mary S. Mayo, CR Bard
Gerald E. McDonnell, PhD, Steris Corporation
Anna M McIvor, Johnson & Johnson
Susan E Norton, Bausch & Lomb Inc.

Chairs:
Victoria M. Hitchins, PhD, FDA/CDRH
Michael H. Scholla, PhD, DuPont Protection Technologies

Members:
Christopher Anderson, Boston Scientific Corporation
Trabue D. Bryans, BryKor LLC
Nancy Chobin, RN CSPDM, St Barnabas Healthcare System
Charles Cogdill, Covidien
Ramona Conner, RN MSN CNOR, Association of Perioperative Registered Nurses
Jacqueline Daley, Sinai Hospital of Baltimore
Kimberly Darnell, CR Bard
Lisa Foster, Medpoint LLC
Joel R. Gorski, PhD, NAMSA
Joyce M. Hansen, Johnson & Johnson
Douglas F. Harbrecht, Sterility Assurance LLC
Deborah A. Havlik, Hospira Worldwide Inc.

NOTE—Participation by federal agency representatives in the development of this technical information report does not constitute endorsement by the federal government or any of its agencies.

At the time this document was published, the AAMI Sterilization Standards Committee had the following members:

Chairs: Victoria M. Hitchins, PhD, FDA/CDRH
Michael H. Scholla, PhD, DuPont Protection Technologies

Members: Christopher Anderson, Boston Scientific Corporation
Trabue D. Bryans, BryKor LLC
Nancy Chobin, RN CSPDM, St Barnabas Healthcare System
Charles Cogdill, Covidien
Ramona Conner, RN MSN CNOR, Association of Perioperative Registered Nurses
Jacqueline Daley, Sinai Hospital of Baltimore
Kimberly Darnell, CR Bard
Lisa Foster, Medpoint LLC
Joel R. Gorski, PhD, NAMSA
Joyce M. Hansen, Johnson & Johnson
Douglas F. Harbrecht, Sterility Assurance LLC
Deborah A. Havlik, Hospira Worldwide Inc.
NOTE—Participation by federal agency representatives in the development of this technical information report does not constitute endorsement by the federal government or any of its agencies.
Foreword

This technical information report (TIR) was developed by the Microbiological Methods Working Group under the purview of the AAMI Sterilization Standards Committee.

Quality systems regulations require that an appropriate environment must be established, maintained, and monitored for the manufacture of medical devices.

The objective of this TIR is to provide guidance on the routine monitoring for viable and non-viable particulates in controlled environments used to produce healthcare products that are intended to be terminally sterilized.

References to bibliography entries appear throughout the document in brackets, e.g. [1].

As used within the context of this document, “should” indicates that among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but is not prohibited. “May” is used to indicate that a course of action is permissible within the limits of the TIR. “Can” is used as a statement of possibility and capability. Finally, “must” is used only to describe “unavoidable” situations, including those mandated by government regulation.

Suggestions for improving this technical information report are invited. Comments and suggested revisions should be sent to Technical Programs, AAMI, 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633.

NOTE—This foreword does not contain provisions of the AAMI TIR52:2014, *Environmental Monitoring for Terminally Sterilized Healthcare Products* (AAMI TIR52:2014), but it does provide important information about the development and intended use of the document.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Environmental Monitoring For Terminally Sterilized Healthcare Products

1 Scope
This technical report addresses routine monitoring for viable (i.e. microorganisms) and non-viable particulates in controlled environments used to produce healthcare products that are intended to be terminally sterilized. As required by the current applicable quality system regulations, an appropriate environment must be established, maintained, and monitored for the manufacture of medical devices. The following types of viable and non-viable particulate monitoring are included in the scope of this technical report:

a) Air (viable and non-viable particulates)
b) Surfaces (viable particulates)
c) Water (viable particulates)
d) Compressed gases (viable and non-viable particulates)

Personnel monitoring, product monitoring, differential pressures, and the effects of temperature and humidity on the manufacturing process are outside the scope of this technical report.

For requirements and guidance for establishing classified cleanrooms see ISO 14644.

2 Normative references
The following standards are indispensable for the application of this document. For dated references, only the edition cited applies.

ISO 14644-1, Cleanrooms and associated controlled environments – Part 1: Classification of air cleanliness
ISO 14644-2, Cleanrooms and associated controlled environments – Part 2: Specifications for testing and monitoring to prove continued compliance with ISO 14644-1
ISO 14644-5, Cleanrooms and associated controlled environments – Part 5: Operations

3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 14698-1, ISO 14698-2 and the following apply.

3.1 Action level: level set by the user in the context of controlled environments, which, when exceeded, requires immediate action.
[ISO 14644-7:2004]

3.2 Alert level: level set by the user in the context of a controlled environment, giving early warning of a drift from normal conditions, which, when exceeded, should result in increased attention in the process.
[ISO 14644-7:2004]

3.3 Bioburden: the population of viable microorganisms on or in product.
[ISO/TS 11139:2006]