Medical devices—Quality management systems—Guidance on the application of ISO 13485:2003
Abstract: Provides guidance on the application of requirements contained in ISO 13485:2003, including detailed guidance related to process validation, design control, and quality planning.

Keywords: medical devices, quality management systems, design control, process control, quality records
AAMI Technical Information Report

A technical information report (TIR) is a publication of the Association for the Advancement of Medical Instrumentation (AAMI) Standards Board that addresses a particular aspect of medical technology.

Although the material presented in a TIR may need further evaluation by experts, releasing the information is valuable because the industry and the professions have an immediate need for it.

A TIR differs markedly from a standard or recommended practice, and readers should understand the differences between these documents.

Standards and recommended practices are subject to a formal process of committee approval, public review, and resolution of all comments. This process of consensus is supervised by the AAMI Standards Board and, in the case of American National Standards, by the American National Standards Institute.

A TIR is not subject to the same formal approval process as a standard. However, a TIR is approved for distribution by a technical committee and the AAMI Standards Board.

Another difference is that, although both standards and TIRs are periodically reviewed, a standard must be acted on—reaffirmed, revised, or withdrawn—and the action formally approved usually every five years but at least every 10 years. For a TIR, AAMI consults with a technical committee about five years after the publication date (and periodically thereafter) for guidance on whether the document is still useful—that is, to check that the information is relevant or of historical value. If the information is not useful, the TIR is removed from circulation.

A TIR may be developed because it is more responsive to underlying safety or performance issues than a standard or recommended practice, or because achieving consensus is extremely difficult or unlikely. Unlike a standard, a TIR permits the inclusion of differing viewpoints on technical issues.

CAUTION NOTICE: This AAMI TIR may be revised or withdrawn at any time. Because it addresses a rapidly evolving field or technology, readers are cautioned to ensure that they have also considered information that may be more recent than this document.

All standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Comments on this technical information report are invited and should be sent to AAMI, Attn: Standards Department, 1110 N. Glebe Road, Suite 220, Arlington, VA 22201-4795.

ANSI Technical Report

This AAMI TIR has been registered by the American National Standards Institute as an ANSI Technical Report.

Publication of this ANSI Technical Report has been approved by the accredited standards developer (AAMI). This document is registered as a Technical Report series of publications according to the Procedures for the Registration of ANSI Technical Reports. This document is not an American National Standard and the material contained herein is not normative in nature.
Contents

Glossary of equivalent standards .. vi

Committee representation ... viii

Background of AAMI adoption of ISO/TR14969:2004 ... x

Foreword ... xi

Introduction .. xii

1 Scope

1.1 General ... 1

1.2 Application ... 1

1.2.1 General ... 2

1.2.2 Exclusions ... 2

1.2.3 Non-applicability ... 2

2 Normative references

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision. ... 2

3 Terms and definitions

General ... 1

Application.. 1

4 Quality management system

4.1 General requirements .. 3

4.2 Documentation requirements .. 4

4.2.1 General ... 4

4.2.2 Quality manual .. 6

4.2.3 Control of documents .. 6

4.2.4 Control of records ... 8

5 Management responsibility

5.1 Management commitment ... 9

5.2 Customer focus ... 10

5.3 Quality policy .. 10

5.4 Planning ... 11

5.4.1 Quality objectives .. 11

5.4.2 Quality management system planning ... 12

5.5 Responsibility, authority, and communication ... 13

5.5.1 Responsibility and authority .. 13

5.5.2 Management representative ... 13

5.5.3 Internal communication ... 14

5.6 Management review ... 14

5.6.1 General ... 14

5.6.2 Review input .. 15

5.6.3 Review output ... 16

6 Resource management

6.1 Provision of resources ... 17

6.2 Human resources ... 17

6.2.1 General ... 17

6.2.2 Competence, awareness, and training .. 18

6.3 Infrastructure .. 19

6.4 Work environment ... 20

6.4.1 General ... 20

6.4.2 Environmental control in product realization .. 20

6.4.3 Personnel ... 21

6.4.4 Contaminated or potentially contaminated product .. 22

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Exclusions</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Non-applicability</td>
<td>2</td>
</tr>
<tr>
<td>Normative references</td>
<td>General</td>
<td>2</td>
</tr>
<tr>
<td>Terms and definitions</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>Quality management system</td>
<td>General requirements</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Documentation requirements</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Quality manual</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Control of documents</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Control of records</td>
<td>8</td>
</tr>
<tr>
<td>Management responsibility</td>
<td>Management commitment</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Customer focus</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Quality policy</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Planning</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Quality objectives</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Quality management system planning</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Responsibility, authority, and communication</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Responsibility and authority</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Management representative</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Internal communication</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Management review</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Review input</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Review output</td>
<td>16</td>
</tr>
<tr>
<td>Resource management</td>
<td>Provision of resources</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Human resources</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Competence, awareness, and training</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Infrastructure</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Work environment</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Environmental control in product realization</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Personnel</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Contaminated or potentially contaminated product</td>
<td>22</td>
</tr>
</tbody>
</table>
7 Product realization ... 22

7.1 Planning of product realization .. 22
 7.1.1 General .. 23
 7.1.2 Risk management ... 24
 7.1.3 Lifetime of the medical device .. 24

7.2 Customer-related processes ... 25
 7.2.1 Determination of requirements related to the product ... 25
 7.2.2 Review of requirements related to the product ... 26
 7.2.3 Customer communication .. 27

7.3 Design and development ... 27
 7.3.1 Design and development planning .. 27
 7.3.2 Design and development inputs ... 29
 7.3.3 Design and development outputs ... 31
 7.3.4 Design and development review .. 32
 7.3.5 Design and development verification .. 33
 7.3.6 Design and development validation ... 34
 7.3.7 Control of design and development changes .. 35

7.4 Purchasing .. 36
 7.4.1 Purchasing process ... 36
 7.4.2 Purchasing information ... 37
 7.4.3 Verification of purchased product .. 38

7.5 Production and service provision .. 39
 7.5.1 Control of production and service provision ... 39
 7.5.2 Validation of processes for production and service provision 43
 7.5.3 Identification and traceability ... 46
 7.5.4 Customer property .. 48
 7.5.5 Preservation of product .. 49

7.6 Control of monitoring and measuring devices ... 50

8 Measurement, analysis, and improvement .. 51

8.1 General ... 51

8.2 Monitoring and measurement ... 53
 8.2.1 Feedback .. 53
 8.2.2 Internal audit ... 54
 8.2.3 Monitoring and measurement of processes ... 55
 8.2.4 Monitoring and measurement of product ... 55

8.3 Control of nonconforming product ... 57

8.4 Analysis of data .. 59

8.5 Improvement ... 60
 8.5.1 General ... 60
 8.5.2 Corrective action ... 62
 8.5.3 Preventive action ... 64

Annexes

A Terms used in certain regulatory administrations to describe documents referenced in this Technical Report ... 66

B Analysis of significant changes from ISO 13485:1996 to ISO 13485:2003 ... 67

Bibliography ... 75

Figure

1 Model of a process-based quality management system .. xiii
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. For each International Standard that has been adopted by AAMI (and ANSI), the table below gives the corresponding U.S. designation and level of equivalency to the International Standard.

NOTE—Documents are sorted by international designation.

Other normatively referenced International Standards may be under consideration for U.S. adoption by AAMI; therefore, this list should not be considered exhaustive.

<table>
<thead>
<tr>
<th>International designation</th>
<th>U.S. designation</th>
<th>Equivalency</th>
</tr>
</thead>
<tbody>
<tr>
<td>International designation</td>
<td>U.S. designation</td>
<td>Equivalency</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
Committee representation

Association for the Advancement of Medical Instrumentation
Quality Management and Corresponding General Aspects for Medical Devices Committee

At the time this document was published, the AAMI Quality Management and Corresponding General Aspects for Medical Devices Committee had the following members:

Chair: Charles B. Sidebottom, PE
Members:
Leighton W. Hansel, Abbott Laboratories
Edward R. Kimmelman, BME, JD, Roche Diagnostics Corp.
Harvey Rudolph, PhD, Underwriters Laboratories, Inc.
Charles B. Sidebottom, PE, Medtronic, Inc.
Kimberly A. Trautman, U.S. Food and Drug Administration/Center for Devices and Radiological Health
Alternate: Ken Slickers, PhD, DABCC, Roche Diagnostics Corp.

At the time this document was published, the committee’s Application of Quality Systems to Medical Devices Working Group had the following members:

Cochairs: Edward R. Kimmelman, BME, JD
Kimberly A. Trautman
Members:
Bradley S. Amundson, SGS International Certification Services, Inc.
Krissan Anderson, St. Jude Medical, Inc.
Robert G. Britain, National Electrical Manufacturers Association
Marge F. Brown, Baxter Healthcare Corporation
Cynthia A. Burns, Smith & Nephew, Inc.
Charles R. Burr, MS, MBA, Charles Burr Q/R Services, Inc.
Charles Cogdill, Boston Scientific Corp.
Christopher E. Danford, Alcon Laboratories, Inc.
Ira D. Duesler, Conmed Corporation
Ronald Fisher, Bausch & Lomb, Inc.
Christine M. Flahive, Chris Flahive Associates
Richard C. Fries, Instrumentarium USA, Inc.
Christopher D. Ganser, CR Bard
Nancy George, MS, BS, CSQE, CQA, Software Quality Management, Inc.
Jerry Hegarty, Guidant Corporation/Cardiac Rhythm Management
James M. Hughes, Abbott Laboratories
Hyman B. Katz, PhD, Pall Medical
Edward R. Kimmelman, BME, JD, Roche Diagnostics Corp.
Kenneth F. Kopesky, Medtronic, Inc.
David M. Link, Concord, MA
Christof Z. Littwitz, Philips Medical Systems
David Liu, Johnson & Johnson
Mark Marley, Pharmaceutical Delivery Systems
Barry F.J. Page, Garner, NC
Luann Pendy, Hospira, Inc.
Rebecca Rickiey, Sterigenics International
Leslie S. Schnoll, MS, Hill-Rom Company
Mark N. Smith, Getinge USA
Kimberly A. Trautman, U.S. Food and Drug Administration/Center for Devices and Radiological Health
Alternate: Leonard S. Berman, PhD, Pall Medical
Frederick R. Catt, Getinge USA
Lisa Foster, Sterigenics International
Laurence H. Hecker, Hospira, Inc.
Pamela Jennings, Pharmaceutical Delivery Systems
Daniel M. Newhart, Bausch & Lomb, Inc.
Glenn W. Pittluck, Abbott Laboratories
David Porter, PhD, US Pharmacopeia Convention, Inc.
Ken Slickers, PhD, DABCC, Roche Diagnostics Corporation
Jacqueline Welch, U.S. Food and Drug Administration/Center for Devices and Radiological Health
Gregory Whitney, CR Bard

NOTE—Participation by federal agency representatives in the development of this TIR does not constitute endorsement by the federal government or any of its agencies.
Background of AAMI adoption of ISO/TR14969:2004

As indicated in the foreword to the main body of this document (page xi), the International Organization for Standardization (ISO) is a worldwide federation of national standards bodies. The United States is one of the ISO members that took an active role in the development of this technical report.

International Technical Report 14969 was developed by Working Group (WG) 1 Application of quality management to medical devices, of ISO Technical Committee (TC) 210, Quality management and corresponding general aspects for medical devices, to provide guidance on the application of requirements contained in ISO 13485:2003, including detailed guidance related to process validation, design control, and quality planning.

U.S. participation in this ISO/TC 210/WG 1 is organized through the U.S. Technical Advisory Group for ISO/TC 210, administered by the Association for the Advancement of Medical Instrumentation (AAMI) on behalf of the American National Standards Institute (ANSI). AAMI administers the International Secretariat for ISO/TC 210 on behalf of the United States, and U.S. experts made a considerable contribution to this technical report.

This edition of ISO/TR 14969 is based on ISO 13485:2003 and provides guidance on quality assurance of product, customer requirements, and other elements of quality system management. It does not provide guidance on concepts that are not included in ISO 13485:2003, such as “continual improvement” and “customer satisfaction.”

AAMI (and ANSI) have adopted other ISO documents. See the Glossary of Equivalent Standards for a list of ISO standards adopted by AAMI, which gives the corresponding U.S. designation and the level of equivalency with the ISO standard.

The concepts incorporated into this technical information report should not be considered inflexible or static. This technical information report, like any other, must be reviewed and updated periodically to assimilate progressive technological developments. To remain relevant, it must be modified as technological advances are made and as new data comes to light.

Suggestions for improving this technical information report are invited. Comments and suggested revisions should be sent to Standards Department, AAMI, 1110 N. Glebe Road, Suite 220, Arlington, VA 22201-4795.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

In exceptional circumstances, when a technical committee has collected data of a different kind from that which is normally published as an International Standard (“state of the art,” for example), it may decide by a simple majority vote of its participating members to publish a Technical Report. A Technical Report is entirely informative in nature and does not have to be reviewed until the data it provides are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this Technical Report may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TR 14969 was prepared by Technical Committee ISO/TC 210, Quality management and corresponding general aspects for medical devices.

NOTE—ISO/TC 210/WG1 is prepared to accept questions and comments related to the content of ISO 13485:2003 and/or ISO/TR 14969:2004. Please address all such questions and comments to the ISO/TC 210 secretariat at: hwoehrle@aami.org. These questions and comments will be considered for development of additional guidance in the application of ISO 13485:2003 either by revision of ISO/TR 14969 or the development of a “Frequently Asked Questions” document. You will not receive a response to your questions or comments; however, they will be considered for future use as noted above.

This first edition of ISO/TR 14969 cancels and replaces ISO 14969:1999, which has been technically revised.

Throughout this Technical Report, when the text of ISO 13485 is directly quoted, it appears enclosed in boxes prefaced by: “ISO 13485:2003, Medical devices—Quality management systems—Requirements for regulatory purposes.”
Introduction

0.1 General

0.1.1 This Technical Report provides guidance to assist in the development, implementation, and maintenance of quality management systems that aim to meet the requirements of ISO 13485 for organizations that design and develop, produce, install, and service medical devices, or that design, develop, and provide related services. It provides guidance related to quality management systems for a wide variety of medical devices and related services. Such medical devices include active, non-active, implantable, and non-implantable medical devices and in vitro diagnostic medical devices.

ISO 13485 specifies the quality management system requirements for medical devices for regulatory purposes (see Annex A). ISO 13485 accommodates the previous ISO 13488 by permissible exclusion as specified in ISO 13485:2003, 1.2.

When judging the applicability of the guidance in this Technical Report, one should consider the nature of the medical device(s) to which it will apply, the risk associated with the use of these medical devices, and the applicable regulatory requirements.

As used in this Technical Report, the term “regulatory requirement” includes any part of a law, ordinance, decree, or national and/or regional regulation applicable to quality management systems for medical devices and related services.

This Technical Report provides some approaches that an organization can use to implement and maintain a quality management system which conforms with ISO 13485. Alternative approaches can be used if they also satisfy the requirements of ISO 13485.

0.1.2 The guidance given in this Technical Report is applicable to the design, development, production, installation, and servicing of medical devices of all kinds. It describes concepts and methods that can be considered by organizations which are establishing and maintaining quality management systems.

An organization can voluntarily incorporate guidance from this Technical Report, wholly or in part, into its quality management system.

0.1.3 Guidance contained in this Technical Report can be useful as background information for those representing quality management system assessors, Conformity Assessment Bodies, and regulatory enforcement bodies.

The guidance contained in this Technical Report is not to be used for identifying specific deficiencies of quality management systems, unless such guidance is voluntarily incorporated by the organization into the documentation describing and supporting the organization’s quality management system, or unless such guidance is specifically made part of the regulatory requirements relevant to the organization’s operation.
0.2 Process approach

ISO 13485 promotes the adoption of a process approach when developing, implementing, and improving the effectiveness of a quality management system, with the objective of meeting customer and regulatory requirements and providing medical devices that meet customer and regulatory requirements.

For an organization to function effectively, it has to identify and manage numerous linked activities. An activity using resources, and managed in order to enable the transformation of inputs into outputs, can be considered as a process. Often the output from one process directly forms the input to the next.

The application of a system of processes within an organization, together with the identification and interactions of these processes, and their management, can be referred to as the “process approach.”

An advantage of the process approach is the ongoing control which it provides over the linkage between the individual processes within the system of processes, as well as over their combination and interaction.

If used within a quality management system, such an approach emphasizes the importance of

— understanding and meeting requirements,
— considering processes in terms of added value,
— obtaining results of process performance and effectiveness, and
— improving processes based on objective measurement.

The model of a process-based quality management system shown in Figure 1 illustrates the process linkages presented in ISO 13485:2003. This illustration shows that customers and regulatory authorities play a significant role in defining requirements as inputs. Monitoring of customer feedback requires the evaluation of information relating to whether the organization has met the customer requirements. The model shown in Figure 1 covers all the requirements of ISO 13485, but does not show processes at a detailed level.
In addition, the methodology known as "Plan-Do-Check-Act" (PDCA) can be applied to all processes. PDCA can be briefly described as follows.

Plan: Establish the objectives and processes necessary to deliver results in accordance with customer requirements and the organization’s policies.

Do: Implement the processes.

Check: Monitor and measure processes and product against policies, objectives, and requirements for the product and report the results.

Act: Take actions to improve process performance.

0.3 Relationship with other standards, guidance documents, and regulatory requirements

The relationship between ISO 13485, this Technical Report, and the general standards for quality management systems (ISO 9001 and ISO 9004) is summarized as follows:

— This Technical Report provides guidance on the application of ISO 13485.

— ISO 13485 specifies requirements for quality management systems in order to achieve regulatory compliance in the medical devices industries. It follows the format, structure, and process approach of ISO 9001. It differs from ISO 9001 in that it specifies additional requirements but does not include the explicit requirements for continual improvement and customer satisfaction.

— ISO 9001 is an International Standard for quality management systems in general.

— ISO 9004 gives guidance on a wider range of objectives of quality management systems than does this Technical Report, particularly for the continual improvement of an organization's overall performance and efficiency, as well as its effectiveness. ISO 9004 is suitable as a guide for organizations whose top management wishes to move beyond the requirements of ISO 13485 in pursuit of continual performance improvement and customer satisfaction. However, it is not intended for certification or for contractual purposes.

ISO 13485 includes those generic quality management system requirements contained in ISO 9001 that are relevant to a regulated organization that designs and develops, produces, installs, and/or services medical devices, or which designs and develops and provides related services. This Technical Report, however, does not set out to provide specific guidance with respect to these generic quality management system requirements, which are common to both ISO 13485 and ISO 9001. Guidance for ISO 9001 can be found, for example, in the ISO brochure, ISO 9001 for Small Businesses—What to do, and in ISO 9000 Introduction and Package module.

Guidance provided in this Technical Report has taken into consideration requirements and guidance contained in documents from the following organizations:

— Global Harmonization Task Force (GHTF),

— International Organization for Standardization (ISO),

— European Committees for Standardization (CEN and CENELEC), and

— national regulatory bodies.

Many of these documents are listed in the bibliography.

0.4 Compatibility with other management systems

Conformance to ISO 13485 quality management system requirements does not automatically constitute conformity with national or regional regulatory requirements. It is the organization’s responsibility to identify and establish compliance with relevant regulatory requirements.
1 Scope

1.1 General

This Technical Report provides guidance for the application of the requirements for quality management systems contained in ISO 13485. It does not add to, or otherwise change, the requirements of ISO 13485. This Technical Report does not include requirements to be used as the basis of regulatory inspection or certification assessment activities.

NOTE—The terms “should,” “can,” and “might” within this Technical Report are used as follows. “Should” is used to indicate that, amongst several possibilities to meet a requirement in ISO 13485, one is recommended as being particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required. “Can” and “might” are used to indicate possibilities or options. These terms do not indicate requirements.

This guidance can be used to better understand the requirements of ISO 13485 and to illustrate some of the variety of methods and approaches available for meeting the requirements of ISO 13485.

1.2 Application

ISO 13485:2003, Medical devices—Quality management systems—Requirements for regulatory purposes

1.2 Application

All requirements of this International Standard are specific to organizations providing medical devices, regardless of the type or size of the organization.

If regulatory requirements permit exclusions of design and development controls (see 7.3), this can be used as a justification for their exclusion from the quality management system. These regulations can provide alternative arrangements that are to be addressed in the quality management system. It is the responsibility of the organization to ensure that claims of conformity with this International Standard reflect exclusion of design and development controls (see 4.2.2 a) and 7.3).

If any requirement(s) in Clause 7 of this International Standard is (are) not applicable due to the nature of the medical device(s) for which the quality management system is applied, the organization does not need to include such a requirement(s) in its quality management system (see 4.2.2 a)).

The processes required by this International Standard, which are applicable to the medical device(s), but which are not performed by the organization, are the responsibility of the organization and are accounted for in the organization’s quality management system (see 4.1 a)).

In this International Standard, the terms “if appropriate” and “where appropriate” are used several times. When a requirement is qualified by either of these phrases, it is deemed to be “appropriate” unless the organization can document a justification otherwise. A requirement is considered “appropriate” if it is necessary in order for

— the product to meet specified requirements, and/or
— the organization to carry out corrective action.
1.2.1 General

Certain product realization requirements of ISO 13485 may legitimately be omitted in one of two ways: they can be "excluded" or they might be "not applicable." It is important to note, however, that any exclusion or non-applicability should be detailed and justified in the organization’s quality manual.

1.2.2 Exclusions

Some regulatory requirements permit organizations to place some medical devices on the market without having to demonstrate conformance with design and development controls (see ISO 13485:2003, 7.3). Organizations should determine the exclusion of 7.3 on a product by product, market by market basis.

Even if the organization is permitted by regulations to exclude the requirements of 7.3, it still has obligations to meet product realization requirements of ISO 13485:2003, 7.2, 7.4, and 7.5 and 7.6.

1.2.3 Non-applicability

ISO 13485 provides for the organization to omit from its quality management system those product realization requirements that are not applicable due to the nature of the medical device.

For example, an organization providing single-use, sterile medical devices does not need to include within its quality management system elements related to installation and servicing. Similarly, an organization providing non-sterile medical devices does not need to include the elements related to sterilization.

It is important for the organization to review carefully all the requirements of ISO 13485:2003, clause 7, in order to identify those requirements that do apply to functions performed by the organization. Once those requirements are identified, the organization is obliged to comply with ISO 13485:2003, 7.1 and to perform the planning associated with identified product realization requirements.

EXAMPLE—An organization intends

— to place its own label on a medical device designed and developed, produced, and serviced by suppliers outside its quality management system, and to market this medical device,

— to communicate with customers who have purchased the medical device, and

— to have systems in place for receiving customer complaints.

Even though the organization does not perform design and development activities itself, it cannot consider 7.3 to be non-applicable. It still has obligations to meet the requirements of 7.3, unless relevant regulations permit an exclusion. Once the organization identifies those requirements, it is obliged under 7.1 to plan for the quality management system processes needed to meet those requirements.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 9000:2000, Quality management systems—Fundamentals and vocabulary

ISO 13485:2003, Medical Devices—Quality management systems—Requirements for regulatory purposes

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 9000 and ISO 13485 apply.

NOTE—The terms provided in Annex A should be regarded as generic, as definitions provided in national regulatory requirements can differ.