PREVIEW COPY

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Abstract: This technical information report (TIR) addresses critical aspects of processes affecting the quality of fluids used to perform hemodialysis, including water, concentrates, and final dialysis fluid. It defines concentrates for hemodialysis, provides rationale for their use, and describes the major critical aspects of the quality process involved in the preparation, handling, and use of dialysis fluids. This TIR does not address peritoneal dialysis fluids.

Keywords: concentrate, dialysis, quality, water
AAMI Technical Information Report

A technical information report (TIR) is a publication of the Association for the Advancement of Medical Instrumentation (AAMI) Standards Board that addresses a particular aspect of medical technology.

Although the material presented in a TIR may need further evaluation by experts, releasing the information is valuable because the industry and the professions have an immediate need for it.

A TIR differs markedly from a standard or recommended practice, and readers should understand the differences between these documents.

Standards and recommended practices are subject to a formal process of committee approval, public review, and resolution of all comments. This process of consensus is supervised by the AAMI Standards Board and, in the case of American National Standards, by the American National Standards Institute.

A TIR is not subject to the same formal approval process as a standard. However, a TIR is approved for distribution by a technical committee and the AAMI Standards Board.

Another difference is that, although both standards and TIRs are periodically reviewed, a standard should be acted on—reaffirmed, revised, or withdrawn—and the action formally approved usually every five years but at least every 10 years. For a TIR, AAMI consults with a technical committee about five years, after the publication date (and periodically thereafter) for guidance on whether the document is still useful—that is, to check that the information is relevant or of historical value. If the information is not useful, the TIR is removed from circulation.

A TIR may be developed because it is more responsive to underlying safety or performance issues than a standard or recommended practice, or because achieving consensus is extremely difficult or unlikely. Unlike a standard, a TIR permits the inclusion of differing viewpoints on technical issues.

CAUTION NOTICE: This AAMI TIR may be revised or withdrawn at any time. Because it addresses a rapidly evolving field or technology, readers are cautioned to ensure that they have also considered information that may be more recent than this document.

All standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Comments on this TIR are invited and should be sent to AAMI, Attn: Standards Department, 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633.

Published by
AAMI
4301 N. Fairfax Dr., Suite 301
Arlington, VA 22203-1633
www.aami.org

© 2018 by the Association for the Advancement of Medical Instrumentation
All Rights Reserved

Publication, reproduction, photocopying, storage, or transmission, electronically or otherwise, of all or any part of this document without the prior written permission of the Association for the Advancement of Medical Instrumentation is strictly prohibited by law. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, complete the reprint request form at www.aami.org or contact AAMI at 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633. Phone: +1-703-525-4890; Fax: +1-703-525-1067.

Printed in the United States of America

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary of equivalent standards</td>
<td>iv</td>
</tr>
<tr>
<td>Committee representation</td>
<td>v</td>
</tr>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction</td>
<td>viii</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Definitions</td>
<td>1</td>
</tr>
<tr>
<td>3 Rationale for the control of chemical composition of dialysis fluid</td>
<td>4</td>
</tr>
<tr>
<td>4 Strategies to achieve control of chemical content in dialysis fluid</td>
<td>4</td>
</tr>
<tr>
<td>4.1 Manufacturers</td>
<td>4</td>
</tr>
<tr>
<td>4.1.1 Concentrates for hemodialysis</td>
<td>4</td>
</tr>
<tr>
<td>4.1.2 Concentrate mixers</td>
<td>5</td>
</tr>
<tr>
<td>4.1.3 Water systems for hemodialysis applications</td>
<td>6</td>
</tr>
<tr>
<td>4.1.4 Concentrate distribution systems</td>
<td>6</td>
</tr>
<tr>
<td>4.1.5 Hemodialysis equipment</td>
<td>7</td>
</tr>
<tr>
<td>4.2 Dialysis providers (users)</td>
<td>9</td>
</tr>
<tr>
<td>4.2.1 Training</td>
<td>10</td>
</tr>
<tr>
<td>4.2.2 Fluid handling and identification</td>
<td>10</td>
</tr>
<tr>
<td>4.3 Concentrate and dialysis fluid measurement</td>
<td>11</td>
</tr>
<tr>
<td>4.4 Laboratories</td>
<td>12</td>
</tr>
<tr>
<td>5 Example of dialysis product process flow diagram</td>
<td>14</td>
</tr>
<tr>
<td>Bibliography</td>
<td>15</td>
</tr>
</tbody>
</table>
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. AAMI maintains a current list of each International Standard that has been adopted by AAMI (and ANSI). Available on the AAMI website at the address below, this list gives the corresponding U.S. designation and level of equivalency to the International Standard.

www.aami.org/standards/glossary.pdf
Committee representation

Association for the Advancement of Medical Instrumentation
Renal Disease and Detoxification Committee

This technical information report (TIR) was developed by the AAMI Renal Disease and Detoxification Committee. Committee approval of the TIR does not necessarily imply that all committee members voted for its approval.

At the time this document was published, the AAMI Renal Disease and Detoxification Committee had the following members:

Cochairs: Jo-Ann Maltais, PhD
Denny Treu, BSME

Members: Matthew Arduino, DrPH, Centers for Disease Control and Prevention
Alex Barten, Baxter Healthcare Corp.
Christian Gert Bluchel, Temasek Polytechnic, Singapore
Karla Byrne, Rockwell Medical Inc.
Monet Carnahan, Nephros Inc.
Danilo B. Concepcion, CBNT, CCHT-A, FNKF, St. Joseph Hospital Renal Center
Deborah Cole, MSN RD CNN, National Renal Administrators Association
Martin Crnkovich, Fresenius Medical Care N.A.
R. Barry Deeter, RN, MSN, University of Utah Dialysis Program
Gema Gonzalez, U.S. Food and Drug Administration/CDRH/ODE
Joe Haney, Ameriwater
Peter Ferdinand Haywood, AWAK Technologies
Robert Hootkins, MD PhD FASN, Austin, TX
Elizabeth Howard, Da’Vita Inc.
Byron Jacobs, CBET, GE Healthcare
Kendall Larson, MarCor Purification
Robert. Levin, MD, Renal Research Institute
Jo Ann Maltais, PhD, Maltais Consulting
Duane Martz, AAEE/MBA, B Braun of America Inc
Bruce H. Merriman, Central Florida Kidney Centers
Klemens Meyer, Tufts Medical Center
Thomas Meyer, Medtronic, Inc.
Paul E. Miller, MD, Dialysis Clinic Inc./Kidney Consultants of Louisiana
Glenda Payne, MS RN, CNN, American Nephrology Nurses’ Association
Toshiya Roberts, American Renal Associates
Joseph Sala, SSc Ed, Mount Sinai Medical Center
David Schmidt, Mayo Clinic, MN
Vern S. Taaffe, Reprocessing Products Corp (RPC)
Denny Treu, BSME, NxStage Medical Inc.
Ashish Upadhyay, Boston U. School of Medicine
Robert J. Vargo, Dialysis Clinic Inc., PA

Alternates: Robert Collins, PhD, Nephros Inc.
Diane Dolan, Ameriwater
Martin Gerber, Medtronic, Inc.
Roger Hall, Reprocessing Products Corp (RPC)
Lynn Jensen, Fresenius Medical Care
Ted Kasperek, DaVita Inc.
Anthony Messana, National Renal Administrators Association
Mark Pasmore, PhD, Baxter Healthcare
Martin Roberts, AWAK Technologies Pte. Ltd.
Ronald Trammell, American Renal Associates
Michael Verguldi, Mar Cor Purification
Foreword

This technical information report was developed by the AAMI Renal Disease and Detoxification Committee. The objective is to provide dialysis practitioners additional background information related to the dialysis processes described in ANSI/AAMI 23500 (proposed ANSI/AAMI/ISO 23500-1), Guidance for the preparation and quality management of fluids for hemodialysis and related therapies, that affect the chemical composition of dialysis fluid.

As used within the context of this document, “should” indicates that among several possibilities one is recommended as particularly suitable without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but not prohibited. “May” is used to indicate that a course of action is permissible within the limits of the TIR. “Can” is used as a statement of possibility and capability. “Must” is used only to describe “unavoidable” situations, including those mandated by government regulations.

Suggestions for improving this TIR are invited. Comments and suggested revisions should be sent to Technical Programs, AAMI, 4301 N. Fairfax Dr., Suite 301, Arlington, VA 22203-1633.

NOTE This foreword does not contain provisions of AAMI TIR72:2017, Dialysis fluid chemical composition, but it does provide important information about the development and intended use of the document.
Introduction: Need for this AAMI TIR

Dialysis fluid (dialysate) is one of many components of a hemodialysis treatment. It can have both chemical and microbiologic impacts on patients. Responsibility for quality control of hemodialysis concentrate preparation has shifted from the medical device manufacturer to the clinic, with the move to “on-site” production of the concentrate products by clinic personnel. The quality of this solution can be affected by various inputs, from production to patient treatment.

ANSI/AAMI 11663 (proposed ANSI/AAMI/ISO 23500-5), Quality of dialysis fluid for hemodialysis and related therapies, establishes quality requirements for dialysis fluid used in hemodialysis and related therapies. Standard dialysis fluid is the minimum acceptable quality for routine hemodialysis, with ultrapure dialysis fluid recommended. ANSI/AAMI 23500 (proposed ANSI/AAMI/ISO 23500-1), Guidance for the preparation and quality management of fluids for hemodialysis and related therapies, outlines the quality program management requirements for ensuring the quality of fluids, mixers, distribution systems, and dialysis equipment used for hemodialysis. These quality standards reference specified range limits for the chemical constituents of prepared dialysis fluid and the maximum allowable levels of chemical and microbial contaminants.

The labeled content of hemodialysis concentrate describes the amount of each constituent delivered under ideal conditions in dialysis fluid during hemodialysis. Variation occurring at any of the process points in the manufacture, handling, distribution, and measurement of dialysis fluid can affect the actual delivered chemical content. Standards with performance limits are established for some, but not all, process steps. This technical information report (TIR) was developed to provide background information on process factors that could contribute to variability in the chemical content of the prepared dialysis fluid, and to review strategies helpful in controlling these variables.

This TIR is directed at healthcare professionals responsible for the final preparation of dialysis fluid (e.g., dialysis facility managers, technical staff, direct care providers).

PREVIEW COPY

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
1 Scope

This TIR addresses the roles of manufacturing, laboratory testing, and clinical processes in relation to the production and testing of dialysis fluid for hemodialysis.

1.1 Inclusions

The TIR includes discussion of the roles, processes and materials involved in the preparation and use of dialysis fluids for hemodialysis and strategies for managing the risk of failures occurring in related process steps.

1.2 Exclusions

This TIR does not cover peritoneal dialysis fluids, prepackaged fluids, such as those used in continuous renal replacement therapies (CRRT), or sorbent-based dialysis fluid systems that regenerate and recirculate small volumes of dialysis fluid. Although microbiologic contamination is a critical component of dialysis fluid quality, it is addressed in existing standards and therefore not included in this document.

2 Definitions

For the purposes of this TIR, the following definitions apply.

2.1 acid concentrate

“A” concentrate

mixture of salts which, when diluted with dialysis quality water and bicarbonate concentrate, yields dialysis fluid for use in hemodialysis

NOTE 1 The term “acid” refers to the small amount of acid (for example, acetic acid or citric acid) that is included in the concentrate.

NOTE 2 Acid concentrate might contain glucose.

NOTE 3 Acid concentrate can be in the form of a liquid, a dry powder, other highly concentrated media, or some combination of these forms.

2.2 action level

concentration of a contaminant at which steps should be taken to interrupt the trend toward higher, unacceptable levels

2.3 bicarbonate concentrate

“B” Concentrate

concentrated preparation of sodium bicarbonate that, when diluted with dialysis water and acid concentrate, makes dialysis fluid used for dialysis

NOTE 1 Sodium bicarbonate is also known as sodium hydrogen carbonate.

NOTE 2 Some bicarbonate concentrates also contain sodium chloride.

NOTE 3 Bicarbonate concentrate might be supplied in the form of a liquid or a dry powder.

NOTE 4 Dry sodium bicarbonate, without added sodium chloride, is also used in concentrate generators to produce a concentrated solution of sodium bicarbonate used by the dialysis machine to make dialysis fluid.