ANSI/AAMI/ISO 11737-2: 2019
Sterilization of medical devices—Microbiological methods—Part 2: Tests of sterility performed in the definition, validation and maintenance of a sterilization process
Sterilization of medical devices—Microbiological methods—Part 2: Tests of sterility performed in the definition, validation and maintenance of a sterilization process

Abstract: Specifies the general criteria for tests of sterility on medical devices that have been exposed to a treatment with the sterilizing agent that is a fraction of the specified sterilization process. These tests are intended to be performed when defining, validating or maintaining a sterilization process.

Keywords: health care products, medical equipment, sterilization, tests, validation, packages, 11737-2
AAMI Standard

This Association for the Advancement of Medical Instrumentation (AAMI) standard implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI standard does not in any respect preclude anyone, whether they have approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. AAMI standards are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI standard may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than 5 years from the date of publication. Interested parties may obtain current information on all AAMI standards by calling or writing AAMI.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Published by

AAMI
901 N. Glebe Road, Suite 300
Arlington, VA 22203

© 2019 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

This publication is subject to copyright claims of ISO and AAMI. No part of this publication may be reproduced or distributed in any form, including an electronic retrieval system, without the prior written permission of AAMI. All requests pertaining to this draft should be submitted to AAMI. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, visit the Copyright Clearance Center.

Printed in the United States of America

ISBN 978-1-57020-734-1
Contents

Committee representation .. iv
Background of ANSI/AAMI adoption of ISO 11737-2:2019 ... vii
Foreword .. viii
Introduction .. x
1 Scope .. 1
2 Normative references .. 1
3 Terms and definitions.. 1
4 General ... 4
5 Selection of product .. 4
6 Methods for performing tests of sterility ... 6
7 Assessment of the method for performing tests of sterility .. 7
8 Maintenance of the method for performing tests of sterility.. 7
Annex A (informative) Guidance on tests of sterility performed in validation and maintenance of a sterilization process .. 8
Annex B (informative) Typical assignment of responsibilities ... 15
Bibliography ... 16

PREVIEW COPY

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.
For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
Committee representation

Association for the Advancement of Medical Instrumentation

Microbiological Methods Working Group

The adoption of ISO 11737-2 as an American National Standard was initiated by the AAMI Microbiological Methods Working Group. AAMI STWG 8 provides input to the AAMI Sterilization Standards Committee which is the responsible group for providing the U.S. input to the relevant group in ISO/TC 198. U.S. representatives from AAMI Microbiological Methods Working Group and the TAG played an active part in developing the ISO document.

At the time this document was published, the AAMI Microbiological Methods Working Group has the following members:

Cochairs: Carolyn Braithwaite-Nelson
Amy Karren

Members:
Anas Aljabo, CMC Sterilization Ltd
Christopher Anderson, Johnson & Johnson
Jennifer Asleson, Quality, Microbiology & Sterilization Services LLC
Erika Bawor, Insulet Corporation
Jennifer Berg, Sterilucent Inc
Michael Brady, Toxikon Corporation
Carolyn Braithwaite-Nelson, Philips
Trabue Bryans, BryKor LLC
Linnette Cachares, Arthrex Inc
Robb Calabro, AbbVie
Glenn Calvert, Tech Group North America dba West
Sarah Chamberlain, Avista Pharma Solutions Inc
Christina Cloutier, Case Medical Inc
Sean Colwell, WuXi AppTec Inc
Lisa Cook, B Braun of America Inc
Gary Cranston, Consulting & Technical Services/PCS
Emily Craven, Mevex Corporation
Elaine Daniell, EDan-SA LLC
Douglas Davie, Sterilization Validation Services
Michael Douthit, BSI Healthcare
Mary Ann Drosnock, Healthmark Industries Company Inc
Gordon Ely, GEM Consulting
Plamena Encheva-Dimitrov, Preferred Regulatory Consulting Inc
Niki Fidopiastis, NAMSA
Dan Floyd, DuPont Tyvex Medical and Pharmaceutical Protection
Scott Giraud, Medtronic Inc Campus
Elizabeth Gonzalez, FDA/CDRH
Chris Haas, Getinge USA
Douglas Harbrecht, Sterility Assurance LLC
Deborah Havlik, Hospira, a Pfizer company
Beth Jacques, STERIS Corporation
Nupur Jain, Intuitive Surgical Inc
Amy Karren, WL Gore & Associates
Christine Loshbaugh, Edwards Lifesciences
Jo-Ann Maltais, Maltais Consulting
Jeffrey Martin, Sterilization and Quality System Consulting LLC
Tom McElroy, IUVO BioScience
This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.

Alternates:
Tess-Simone Brill, WL Gore & Associates Inc
David Brodersen, Getinge USA
David Brodersen, LexaMed Ltd
Bradley Catalone, TSO3 Inc
Nicole Cufaude, Medtronic Inc Campus
Darren Dahlin, Cantel Inc
Bethany Daniell, EDan-SA LLC
Kimbrell Darnell, Becton Dickinson & Company
Zachary Dukerich, Arthrex Inc
Robert Grizzle, BSI Healthcare
Trang Hoang, Edwards Lifesciences
Nichole Jackson, Ecolab
Wade Johnston, Avanos Medical
Peter Kalkbrenner, Sterilucent Inc
Jacob Killian, IUVO BioScience
Satu King, Philips
Carolyn Kinsley, LexaMed Ltd
Dan Klein, STERIS Corporation
Mark Krocco, Mevex Corporation
Kaumudi Kulkarni, Healthmark Industries Company Inc
Michelle Luebke, Baxter Healthcare Corporation
Patrick McCormick, Bausch & Lomb Inc
NOTE—Participation by federal agency representatives in the development of this standard does not constitute endorsement by the federal government or any of its agencies.
Background of ANSI/AAMI adoption of ISO 11737-2:2019

As indicated in the foreword to the main body of this document (page viii), the International Organization for Standardization (ISO) is a worldwide federation of national standards bodies. The United States is one of the ISO members that took an active role in the development of this standard, which was developed by ISO/TC 198 to fill a need for guidance regarding tests of sterility to be performed when defining, validating or maintaining a sterilization process.

U.S. participation in ISO/TC 198 is organized through the U.S. Technical Advisory Group, AAMI/ST and AAMI ST/WG 8, administered by the Association for the Advancement of Medical Instrumentation. Experts from the United States made a considerable contribution to this standard.

AAMI and ANSI procedures require that standards be reviewed and, if necessary, revised every five years to reflect technological advances that may have occurred since publication.

As used within the context of this document, “shall” indicates requirements strictly to be followed to conform to the recommended practice. “Should” indicates that among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but is not prohibited.

“May” is used to indicate that a course of action is permissible within the limits of the standard. “Can” is used as a statement of possibility and capability. Finally, “must” is used only to describe “unavoidable” situations, including those mandated by government regulation.

NOTE Users of this standard are advised that this document is an AAMI identical adoption of an ISO document and that the following international conventions have been carried over to the AAMI publication:

- British English spelling (e.g. colour instead of color)
- Use of SI units (e.g. metres instead of feet, Celsius instead of Fahrenheit, etc.)
- Decimal comma instead of a decimal point (e.g. 1 000,15 instead of 1,000.15)

The concepts incorporated in this standard should not be considered inflexible or static. This standard, like any other, must be reviewed and updated periodically to assimilate progressive technological developments. To remain relevant, it must be modified as technological advances are made and as new data comes to light.

Suggestions for improving this standard are invited. Comments and suggested revisions should be sent to Standards Department, AAMI, 901 N. Glebe Road, Suite 300, Arlington, VA 22203.

NOTE—Beginning with the ISO foreword on page viii, this American National Standard is identical to ISO 11737-2:2019.
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 198, Sterilization of health care products.

This third edition cancels and replaces the second edition (ISO 11737-2:2009), which has been technically revised.

The main changes compared to the previous edition are as follows:

— addition of a requirement concerning the test samples and the interval of time between the manufacture of product and the exposure to the sterilizing agent being as short as possible;
— addition of a requirement about the samples staying immersed in the culture media and providing a rationale where this is not possible;
— provision of additional guidance regarding performing tests of sterility on packaging, clarifying that package testing is not typically done except when it is an integral part of the product;
— provision of additional guidance regarding what is meant by “controlled environment” for performing tests of sterility;
— provision of additional guidance to discuss circumstances where the method suitability test does not give acceptable results, stating that after multiple attempts to eliminate inhibitory substances, it is appropriate to accept a reduction of inhibitory substances, with an accompanying rationale and risk assessment;
— provision of guidance regarding identification of microbial growth in a test of sterility, saying generally for positive growth the microorganism(s) should be identified;
— provision of guidance regarding method suitability, saying that consideration should be given to periodically demonstrating ongoing method suitability in order to ensure that an accumulation of minor changes over time has not occurred;

— addition of a table to clarify where typical responsibilities reside for the manufacturer or the laboratory.

A list of all parts in the ISO 11737 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
Introduction

A sterile medical device is one that is free from viable microorganisms. International Standards that specify requirements for validation and routine control of sterilization processes require, when it is necessary to supply a sterile medical device, that adventitious microbiological contamination of a medical device from all sources be minimized. Even so, medical devices produced under standard manufacturing conditions in accordance with the requirements for quality management systems (see, for example, ISO 13485) can, prior to sterilization, have microorganisms on them. Such products are non-sterile. The purpose of sterilization is to inactivate the microbiological contaminants and thereby transform the non-sterile products into sterile ones.

The kinetics of inactivation of a pure culture of microorganisms by physical and/or chemical agents used to sterilize medical devices can generally best be described by an exponential relationship between the numbers of microorganisms surviving and the extent of treatment with the sterilizing agent; inevitably this means that there is always a finite probability that a microorganism might survive regardless of the extent of treatment applied. For a given treatment, the probability of survival is determined by the number and resistance of microorganisms and by the environment in which the organisms exist during treatment. It follows that the sterility of any one item in a population subjected to sterilization processing cannot be guaranteed and the sterility of a processed population is defined in terms of the probability of there being a viable microorganism present on a product item.

Generic requirements of the quality management system for design and development, production, installation and servicing are given in ISO 9001 and particular requirements for quality management systems for medical device production are given in ISO 13485. The standards for quality management systems recognise that, for certain processes used in manufacturing, the effectiveness of the process cannot be fully verified by subsequent inspection and testing of the product. Sterilization is an example of such a process. For this reason, sterilization processes are validated for use, the performance of the sterilization process is monitored routinely and the equipment is maintained.

International Standards specifying procedures for the development, validation and routine control of the processes used for sterilization of medical devices have been prepared [see ISO 11135, ISO 11137 (all parts), ISO 14937, ISO 14160, ISO 17665-1 and ISO 20857]. An element of validation might consist of exposing medical devices to the sterilizing agent with the extent of treatment being reduced relative to that which will be used in routine sterilization processing, in order to provide a knowledge of the resistance to the agent of the microbial contamination as it occurs naturally on medical devices. The reduced exposures applied in these instances are often called fractional exposures or verification doses. Subsequent to this reduced exposure, medical devices are subjected individually to tests of sterility as described in this document. Examples of the use of such tests are in:

a) establishing a dose for sterilization by radiation,
b) demonstrating the continued validity of an established sterilization dose, and
c) establishing a cycle for sterilization by evaluating the product's naturally occurring bioburden.

Product that has been exposed to a terminal sterilization process in its final packaged form has a very low probability of the presence of a viable microorganism; such as one in one million or 10^{-6}. As such, performing a test of sterility on product that has been exposed to the complete sterilization process provides no scientifically usable data and is not recommended.

Annex A of this document gives guidance on the techniques used and on practical aspects of the requirements.
Sterilization of medical devices—Microbiological methods—Part 2: Tests of sterility performed in the definition, validation and maintenance of a sterilization process

1 Scope

1.1 This document specifies the general criteria for tests of sterility on medical devices that have been exposed to a treatment with the sterilizing agent which has been reduced relative to that anticipated to be used in routine sterilization processing. These tests are intended to be performed when defining, validating or maintaining a sterilization process.

1.2 This document is not applicable to:

a) sterility testing for routine release of product that has been subjected to a sterilization process,

b) performing a test for sterility (see 3.12),

c) test of sterility or test for sterility for demonstration of product shelf life, stability and/or package integrity, and
d) culturing of biological indicators or inoculated products.

NOTE 1 The performance of a) or b) is not a requirement of ISO 11135, ISO 11137-1, ISO 11137-2, ISO 14160, ISO 14937, ISO 17665-1 or ISO 20857.

NOTE 2 Guidance on culturing biological indicators is included in ISO 11138-7.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

3.1 aseptic technique

conditions and procedures used to minimize the risk of the introduction of microbial contamination