This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
American National Standard

PREVIEW COPY

Water treatment equipment for hemodialysis and related therapies

Approved 21 July 2014 by
Association for the Advancement of Medical Instrumentation

Approved 8 August 2014 by
American National Standards Institute, Inc.

Abstract: Covers devices used to treat water intended for use in the delivery of hemodialysis and related therapies, including water used for: (1) the preparation of concentrates from powder or other highly concentrated media at a dialysis facility; (2) the preparation of dialysis fluid, including dialysis fluid that can be used for the preparation of substitution fluid; (3) the reprocessing of dialyzers for multiple uses. Included within the scope are all devices, piping and fittings between the point at which potable water is delivered to the water treatment system, and the point of use of the dialysis water. Addressed to the manufacturer and/or supplier of water treatment systems and/or devices used for the express purpose of providing water for hemodialysis or related therapies.

Keywords: action, acid, biofilm, chlorine, compliance, endotoxin, labeling, pyrogen

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
AAMI Standard

This Association for the Advancement of Medical Instrumentation (AAMI) standard implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI standard does not in any respect preclude anyone, whether they have approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. AAMI standards are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI standard may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Interested parties may obtain current information on all AAMI standards by calling or writing AAMI, or by visiting the AAMI website at www.aami.org.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Published by

Association for the Advancement of Medical Instrumentation
4301 N. Fairfax Drive, Suite 301
Arlington, VA 22203-1633
www.aami.org

© 2014 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

Publication, reproduction, photocopying, storage, or transmission, electronically or otherwise, of all or any part of this document without the prior written permission of the Association for the Advancement of Medical Instrumentation is strictly prohibited by law. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, complete the reprint request form at www.aami.org or contact AAMI at 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203. Phone: (703) 525-4890; Fax: (703) 525-1067.

Printed in the United States of America

1-57020-551-5
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary of equivalent standards</td>
<td>iv</td>
</tr>
<tr>
<td>Committee representation</td>
<td>v</td>
</tr>
<tr>
<td>US deviation to ISO 26722:2014</td>
<td>vi</td>
</tr>
<tr>
<td>Introduction</td>
<td>vii</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>2</td>
</tr>
<tr>
<td>4 Requirements</td>
<td>7</td>
</tr>
<tr>
<td>4.1 Dialysis water quality requirements</td>
<td>7</td>
</tr>
<tr>
<td>4.2 Water treatment equipment requirements</td>
<td>8</td>
</tr>
<tr>
<td>5 Tests</td>
<td>14</td>
</tr>
<tr>
<td>5.1 Compliance with dialysis water quality requirements</td>
<td>14</td>
</tr>
<tr>
<td>5.2 Compliance with water treatment equipment requirements</td>
<td>15</td>
</tr>
<tr>
<td>6 Labelling</td>
<td>18</td>
</tr>
<tr>
<td>6.1 General</td>
<td>18</td>
</tr>
<tr>
<td>6.2 Device markings</td>
<td>18</td>
</tr>
<tr>
<td>6.3 Product literature</td>
<td>19</td>
</tr>
<tr>
<td>Annex A (informative) Rationale for the development and provisions of this International Standard</td>
<td>21</td>
</tr>
<tr>
<td>Annex B (informative) Reference tables from ISO 13959</td>
<td>31</td>
</tr>
<tr>
<td>Bibliography</td>
<td>35</td>
</tr>
</tbody>
</table>
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. AAMI maintains a current list of each International Standard that has been adopted by AAMI (and ANSI). Available on the AAMI website at the address below, this list gives the corresponding U.S. designation and level of equivalency to the International Standard.

www.aami.org/standards/glossary.pdf
Committee representation

Association for the Advancement of Medical Instrumentation

AAMI Renal Disease and Detoxification Committee

This American National Standard was developed by the AAMI Renal Disease and Detoxification Committee. Approval of the American National Standard does not necessarily imply that all committee members voted for its approval.

At the time this document was published, the AAMI Renal Disease and Detoxification Committee had the following members:

Chairs:
- Conor Curtin
- David Roer, MD, FACP, FASN, FASH

Members:
- G Steven Acres, MD, Carolina Regional Nephrology Associates
- James Weldon Baker, AmeriWater
- Alex Barten, Baxter Healthcare Corporation
- Christian Gert Bluchel, AWAK Technologies Pte Ltd.
- Karla S. Byrne, Rockwell Medical Inc
- Danilo B. Concepcion, CBNT, CCHT-A, St Joseph Hospital Renal Center
- Deborah A. Cote, MSN, RN, CNN, National Renal Administrators Association
- Conor Curtin, Fresenius Medical Care North America
- Jim Curtis, Portland, OR
- R. Barry Deeter, RN MSN, University of Utah Dialysis Program
- Martin T. Gerber, Medtronic Inc.
- Gema Gonzalez, FDA/CDRH/ODE
- Elizabeth Howard, DaVita, Inc.
- Byron L. Jacobs, CBET, Sanford USD Medical Center
- Judith Kari, Health Care Financing Administration
- Kendall Larson, Mar Cor Purification
- Nathan W. Levin, MD, Renal Research Institute LLC
- Jo Ann Maltais, PhD, Maltais Consulting
- Duane Martz, B Braun of America, Inc
- Lane McCarthy, CCHT, Hortense & Louis Rubin Dialysis Center
- Bruce H. Merriman, Central Florida Kidney Centers
- Klemens Meyer, MD, Tufts Medical Center
- Paul E. Miller, MD, Kidney Consultants of Louisiana
- Judith Noble-Wang, Centers for Disease Control and Prevention
- Glenda Payne, RN, MS,CNN, American Nephrology Nurses Association
- David Roer, MD, FACP, FASN, FASH, Nephrology and Hypertension Associates
- David Schmidt, Mayo Clinic, Rochester, MN
- James D. Stewardson, Brighton, CO
- Vern S. Taaffe, Reprocessing Products Corp
- Denny Treu, BSME, NxStage Medical Inc
- Robert J. Vargo, Dialysis Clinic Inc

Alternates:
- Roger Hall, Reprocessing Products Corp
- Ted A. Kasparek, DaVita, Inc.
- Robert Levin, Renal Research Institute LLC
- Ken Leyboldt, Baxter Healthcare Corporation
- Anthony Messana, National Renal Administrators Association
- Thomas Meyer, Medtronic Inc.
- Martin Roberts, AWAK Technologies Pte Ltd
- Brooks E. Rogers, Fresenius Medical Care North America
- Teri B. Spencer, RN, TB Spencer Consulting LLC
- Michael Verguldi, Mar Cor Purification

NOTE—Participation by federal agency representatives in the development of this American National Standard does not constitute endorsement by the federal government or any of its agencies.
US deviation to ISO 26722:2014

The International Organization for Standardization (ISO) published ISO 26722:2014, Water treatment equipment for hemodialysis and related therapies as a revision of ISO 26722:2009 on 2014-04-01. The United States is one of the ISO members that took an active role in the development of this standard, which was developed by ISO Technical Committee 150, Subcommittee 2, Cardiovascular implants and extracorporeal systems, to fill a need for minimum requirements for devices used to treat water intended for use in the delivery of hemodialysis and related therapies. The 2014 ISO revision editorially aligned ISO 26722 with the ISO dialysis fluid standards ISO 11663, ISO 13958, ISO 13959, and ISO 23500 which had been developed serially over several years.

U.S. participation in this ISO TC is organized through the U.S. Technical Advisory Group for ISO/TC 150/SC 2, administered by the Association for the Advancement of Medical Instrumentation (AAMI). The U.S. TAG for ISO/TC 150/SC 2 supports the guidance provided in this document.

While considering the US adoption of ISO 26722:2014, the AAMI Renal Disease and Detoxification Committee (U.S. sub-TAG for ISO/TC 150/SC 2/WG 5, Renal replacement, detoxification and apheresis) approved a US deviation to the International Standard. ANSI/AAMI 26722:2014 deviates from ISO 26722:2014 in the following aspect:

The third paragraph of Subclause 5.1.2, Microbiology of dialysis water, which in ISO 26722:2014 reads:

"Total viable counts (standard plate counts) shall be obtained using the membrane filter technique, spread plates, or pour plates. The calibrated loop technique shall not be used. Culture media shall be tryptone glucose extract agar (TGEA), Reasoner’s 2A (R2A) or equivalent. Blood agar and chocolate agar shall not be used. Incubation is at 17 °C to 23 °C and colonies shall be counted after 168 h (7 d) of incubation. Alternative incubation conditions and colony counting times can be used if validated and proven to be equivalent or better than the stated conditions. Endotoxin concentrations shall be determined by the LAL assay or kinetic method validated to yield results that are equivalent to LAL."

is replaced in ANSI/AAMI 26722:2014 by the following:

"Total viable counts (standard plate counts) shall be obtained using the membrane filter technique, spread plates, or pour plates. The calibrated loop technique shall not be used. Approved culture methods shall include one of the following:

1) tryptone glucose extract agar (TGEA) or Reasoner’s 2A supplemented with 4 % sodium bicarbonate, or equivalent. Blood or chocolate agar shall not be used. Incubation temperatures of 17 °C to 23 °C, and an incubation time of 168 h (7 d); or

2) Trypticase soy agar (TSA, a soybean casein digest agar) or standards method agar and plate count agar (also known as TGYE), incubated at 35 °C for 48 hours.

Other test methods may also be used, provided such methods have been appropriately validated and compared to the cited methods. See USP <1231> for guidance on adoption of alternative methods. Endotoxin concentrations shall be determined by the LAL assay or kinetic method validated to yield results that are equivalent to LAL."

The concepts incorporated in this standard should not be considered inflexible or static. This standard, like any other, must be reviewed and updated periodically to assimilate progressive technological developments. To remain relevant, it must be modified as technological advances are made and as new data come to light.

Suggestions for improving this standard are invited. Comments and suggested revisions should be sent to Standards Department, AAMI, 4301 N. Fairfax Drive, Suite 301, Arlington, VA 22203-1633.
Introduction

This International Standard reflects the conscientious efforts of concerned physicians, clinical engineers, nurses, dialysis technicians, and dialysis patients, in consultation with device manufacturers and government representatives, to develop an International Standard for performance levels that could be reasonably achieved at the time of publication. The term “consensus,” as applied to the development of voluntary medical device International Standards, does not imply unanimity of opinion, but rather reflects the compromise necessary in some instances when a variety of interests should be merged.

The provisions of this International Standard apply to individual water treatment devices and to water treatment systems assembled from one or more of these devices. In the first instance, this International Standard is directed at the individual or company that specifies the complete water treatment system and, second, at the supplier who assembles and installs the system. Since systems can be assembled from a number of individual water treatment devices, the provisions of this International Standard are also directed at the manufacturers of these devices, provided that the manufacturer indicates that the device is intended for use in hemodialysis applications. This International Standard is written principally to address water treatment systems for dialysis facilities treating multiple patients. However, many of its provisions equally apply to water treatment systems used in applications where a single patient is treated, such as in a home dialysis or acute hospital dialysis setting. Specifically, requirements for the chemical and microbiological quality of water are considered to apply in all settings, regardless of whether a single patient or many patients are being treated.

The verbal forms used in this International Standard conform to usage described in Annex H of the ISO/IEC Directives, Part 2. For the purposes of this International Standard, the auxiliary verb

— “shall” means that compliance with a requirement or a test is mandatory for compliance with this International Standard,

— “should” means that compliance with a requirement or a test is recommended but is not mandatory for compliance with this International Standard, and

— “may” is used to describe a permissible way to achieve compliance with a requirement or test.

The requirements established by this International Standard should help protect hemodialysis patients from adverse effects arising from known chemical and microbial contaminants found in water supplies. However, proper dialysis and patient safety is ultimately dependent on the quality of the dialysis fluid. Since the manufacturer or supplier of water treatment equipment does not have control over the dialysis fluid, any reference to dialysis fluid in this International Standard is for clarification only and not a requirement of the manufacturer. The responsibility for assuring that the dialysis fluid is not contaminated, mismatched, or otherwise damaging to the patient rests with the clinical professionals caring for the patient under the supervision of the medical director. Recommendations on the preparation and handling of water and dialysis fluid in a dialysis facility are provided in ISO 23500.
This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at +1-877-249-8226 or visit www.aami.org.
American National Standard

ANSI/AAMI 26722:2014

Water treatment equipment for hemodialysis applications and related therapies

1 Scope

1.1 General

This International Standard is addressed to the manufacturer and/or supplier of water treatment systems and/or devices used for the express purpose of providing water for hemodialysis or related therapies.

1.2 Inclusions

This International Standard covers devices used to treat water intended for use in the delivery of hemodialysis and related therapies, including water used for: (1) the preparation of concentrates from powder or other highly concentrated media at a dialysis facility; (2) the preparation of dialysis fluid, including dialysis fluid that can be used for the preparation of substitution fluid; (3) the reprocessing of dialyzers for multiple uses.

Included within the scope of this International Standard are all devices, piping and fittings between the point at which potable water is delivered to the water treatment system, and the point of use of the dialysis water. Examples of devices included within the scope of this International Standard are water purification devices, online water quality monitors (such as conductivity monitors), and piping systems for the distribution of dialysis water.

1.3 Exclusions

Excluded from the scope of this International Standard are dialysis fluid supply systems that proportion water and concentrates to produce dialysis fluid, sorbent dialysis fluid regeneration systems that regenerate and recirculate small volumes of the dialysis fluid, dialysis concentrates, hemodiafiltration systems, hemofiltration systems, systems that process dialyzers for multiple uses, and peritoneal dialysis systems. Some of these devices, such as dialysis fluid delivery systems and concentrates, are addressed in other International Standards. Also excluded from the scope of this International Standard are requirements for the ongoing monitoring of the purity of water used for dialysis fluid, concentrate preparation, or dialyzer reprocessing.