Process challenge devices/test packs for use in health care facilities
This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at (877) 249-8226 or visit www.aami.org.
Process challenge devices/test packs for use in health care facilities

Approved 20 November 2008 by
Association for the Advancement of Medical Instrumentation

Abstract: This technical information report provides information that will assist health care facilities in the selection and use of process challenge devices.

Keywords: biological indicator, chemical indicator, dry heat sterilization, ethylene oxide sterilization, process challenge device, steam sterilization, table-top steam sterilization, vaporized hydrogen peroxide sterilization
AAMI Technical Information Report

A technical information report (TIR) is a publication of the Association for the Advancement of Medical Instrumentation (AAMI) Standards Board that addresses a particular aspect of medical technology.

Although the material presented in a TIR may need further evaluation by experts, releasing the information is valuable because the industry and the professions have an immediate need for it.

A TIR differs markedly from a standard or recommended practice, and readers should understand the differences between these documents.

Standards and recommended practices are subject to a formal process of committee approval, public review, and resolution of all comments. This process of consensus is supervised by the AAMI Standards Board and, in the case of American National Standards, by the American National Standards Institute.

A TIR is not subject to the same formal approval process as a standard. However, a TIR is approved for distribution by a technical committee and the AAMI Standards Board.

Another difference is that, although both standards and TIRs are periodically reviewed, a standard must be acted on—reaffirmed, revised, or withdrawn—and the action formally approved usually every five years but at least every 10 years. For a TIR, AAMI consults with a technical committee about five years after the publication date (and periodically thereafter) for guidance on whether the document is still useful—that is, to check that the information is relevant or of historical value. If the information is not useful, the TIR is removed from circulation.

A TIR may be developed because it is more responsive to underlying safety or performance issues than a standard or recommended practice, or because achieving consensus is extremely difficult or unlikely. Unlike a standard, a TIR permits the inclusion of differing viewpoints on technical issues.

CAUTION NOTICE: This AAMI TIR may be revised or withdrawn at any time. Because it addresses a rapidly evolving field or technology, readers are cautioned to ensure that they have also considered information that may be more recent than this document.

All standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Comments on this technical information report are invited and should be sent to AAMI, Attn: Standards Department, 1110 N. Glebe Road, Suite 220, Arlington, VA 22201-4795.

Published by
Association for the Advancement of Medical Instrumentation
1110 N. Glebe Road, Suite 220
Arlington, VA 22201-4795
www.aami.org

© 2008 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

Publication, reproduction, photocopying, storage, or transmission, electronically or otherwise, of all or any part of this document without the prior written permission of the Association for the Advancement of Medical Instrumentation is strictly prohibited by law. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, contact AAMI at 1110 N. Glebe Road, Suite 220, Arlington, VA 22201-4795. Phone: (703) 525-4890; Fax: (703) 525-1067.

Printed in the United States of America

Contents

Glossary of equivalent standards ... v
Committee representation .. vii
Foreword .. x
Introduction .. xi

1 Scope .. 1
2 Normative references ... 1
3 Definitions and abbreviations ... 2
4 Historical development of PCDs ... 3
5 Selection and use of process challenge devices and test packs 3
6 Process challenge devices ... 5

6.1 PCDs for steam sterilization ... 5
 6.1.1 Introduction ... 5
 6.1.2 Description ... 5
 6.1.3 Reference BI PCDs—AAMI challenge and routine BI PCDs 8
 6.1.4 Types of BI PCDs .. 8
 6.1.5 Recommended practices—Application and frequency of use ... 9
6.2 BI PCDs for ethylene oxide sterilization ... 9
 6.2.1 Introduction ... 9
 6.2.2 Description ... 9
 6.2.3 Reference BI PCDs ... 10
 6.2.4 Types of BI PCDs .. 10
 6.2.5 Recommended practices—Application and frequency of use ... 10
6.3 BI PCDs for table-top dry heat sterilization ... 11
 6.3.1 Introduction .. 11
 6.3.2 Description .. 11
 6.3.3 Reference BI PCDs ... 11
 6.3.4 Types of BI PCDs .. 11
 6.3.5 Recommended practices—Application and frequency of use ... 11
6.4 BI PCDs for hydrogen peroxide sterilization 11
 6.4.1 Introduction .. 11
 6.4.2 Description .. 12
 6.4.3 Reference BI PCDs ... 12
 6.4.4 Types of BI PCDs .. 12
 6.4.5 Recommended practices—Application and frequency of use ... 12
6.5 BI PCDs for ozone sterilization process ... 12
 6.5.1 Introduction .. 12
 6.5.2 Description .. 12
 6.5.3 Reference BI PCDs ... 13
 6.5.4 Types of BI PCDs .. 13
 6.5.5 Recommended practices—Application and frequency of use ... 13

Annexes

A Regulatory perspective ... 14
B The Bowie-Dick test pack .. 15
C International perspectives on PCDs .. 19
D Development and qualification of the 16-towel PCD used for steam sterilization 21
Development and qualification of the routine PCD used for ethylene oxide sterilization ... 30
Historical perspective .. 32
Bibliography .. 34

Tables

Table 1: Examples of manufacturer devices' listed steam cycles that require extended cycle times ... 7
Table B.1—Comparison of ANSI/AAMI/ISO 11140 standards .. 17
Table D.1—16-towel pack survey ... 22
Table D.2—BI results from 250 °F (121 °C) gravity cycle .. 22
Table D.3—BI results from 270 °F (132 °C) deep-vacuum cycle ... 23
Table D.4—BI results from 270 °F (132 °C) pulsing vacuum cycle .. 23
Table D.5—Comparison of the 16-towel pack and the 12 × 12 × 20 inch–pack by most probable number and sterility assessment of spore strips in a 250 °F (121 °C) gravity cycle ... 24
Table D.6—Fraction-negative results in a 250 °F (121 °C) gravity cycle .. 25
Table D.7—BI results from a 250 ºF (121 ºC) steam-flush pressure-pulse cycle ... 25
Table D.8—BI results from a 270 ºF (132 ºC) steam-flush pressure-pulse cycle ... 26
Table E.1—Mean kill time (minutes) and standard deviation for BIs inside the PCD versus outside the PCD ... 31

Figures

Figure D.1—Temperature profiles performed at two different laboratories of 12 × 12 × 20–inch PCDs in a 250 °F (121 °C) gravity cycle ... 26
Figure D.2—Temperature profiles for huck and absorbent 16-towel packs in a 250 °F (121 °C) gravity cycle .. 27
Figure D.3—Average temperature profile for the 16-towel pack in a 250 °F (121 °C) gravity cycle performed at three different laboratories ... 28
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. For each International Standard that has been adopted by AAMI (and ANSI), the table below gives the corresponding U.S. designation and level of equivalency to the International Standard. **NOTE:** Documents are sorted by international designation.

Other normatively referenced International Standards may be under consideration for U.S. adoption by AAMI; therefore, this list should not be considered exhaustive.

<table>
<thead>
<tr>
<th>International designation</th>
<th>U.S. designation</th>
<th>Equivalency</th>
</tr>
</thead>
<tbody>
<tr>
<td>International designation</td>
<td>U.S. designation</td>
<td>Equivalency</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
Committee representation

Association for the Advancement of Medical Instrumentation
Sterilization Standards Committee

This technical information report was developed by the AAMI Process Challenge Device Working Group under the auspices of the AAMI Sterilization Standards Committee. Approval of the TIR does not necessarily imply that all working group members voted for its approval.

At the time this document was published, the AAMI Sterilization Standards Committee had the following members:

Cochairs:
Victoria Hitchins, PhD
William E. Young

Members:
Trabue D. Byrants, AppTec Laboratory Services
Peter Burke, Steris Corporation
Nancy Chobin, RN, St. Barnabas Health System
Charles Cogdill, Boston Scientific Corp.
Ramona Conner, Association of periOperative Registered Nurses
Jacqueline Daley, Sinai Hospital
Kimbrell Darnell, Bard Medical Division
Lisa Foster, Ion Beam Applications
James M. Gibson Jr., JM Gibson Associates
Joel R. Gorski, PhD, NAMSA
Debbie Havlik, Abbott Laboratories
Victoria Huch, Abbott Laboratories
U.S. Food and Drug Administration
Danny Hutson, Cardinal Health
Lois Jones, Cary, NC
Susan G. Klacik, International Association of Healthcare Central Service Material Management (IAHCSMM)
Byron J. Lambert, PhD, Guidant Corporation
Colleen Landers, Canadian Standards Association
David Liu, Johnson & Johnson
Lisa Macdonald, Becton Dickinson
Jeff Martin, Alcon Laboratories
Patrick J. McCormick, PhD, Bausch & Lomb Inc.
Susie McDonald, Winter Park Memorial Hospital
Barry F. J. Page, Garner, NC
Nancy Rakiewicz, STS Life Science Division of Ethox International
Phil M. Schneider, 3M Health Care
Michael H. Scholla, MS, PhD, DuPont Medical Packaging Systems Inc.
Mark Seybold, Baxter
Andrew Sharavara, Propper Manufacturing Co. Inc.
Mark Smith, Getinge
William N. Thompson, TYCO Healthcare
James L. Whitby, MA, MB, FRCP, London, ON, Canada
Martell Kress Winters, Nelson Laboratories

Alternates:
Lloyd Brown, Cordien
Dave Dion, Cardinal Health
Thomas J. Fraszor, DePuy/Johnson & Johnson
Kathy Hoffman, Sterigenics International
Jim Kaiser, Bausch & Lomb Inc.
Joseph J. Lasich, BS, Alcon Laboratories
Chiu Lin, PhD, U.S. Food and Drug Administration
Natalie Lind, IAHCSMM
Ralph Makinen, Boston Scientific Corp.
Mary S. Mayo, Bard Medical Division
David Ford McGoldrick, Abbott Vascular
Jerry R. Nelson, MS, PhD, Nelson Laboratories
Karen Polkinghome, Dupont Nonwoven
Janet Prust, 3M Health Care
Mike Sadowski, Baxter
John R. Scoville Jr., Steris Corporation
Ralph Stick, AppTec Laboratory Services

© 2008 Association for the Advancement of Medical Instrumentation • AAMI TIR31:2008
At the time this document was published, the **AAMI Process Challenge Device Working Group** had the following members:

Cochairs:
- Steve Kirckof
- Susan G. Klacik

Members:
- Eugenia Arluk, Alcon Laboratories
- Richard Bancroft, Esq, Steris Corporation
- Loran H. Bruso, BS, MBA, Sterile Products Mfg Co. Inc.
- Nancy Chobin, RN, St. Barnabas Health System
- Dennis E. Christensen, BS, Process Challenge Devices
- Charlie Christianson, St. Jude Medical Inc.
- Kevin Corrigan, Johnson & Johnson
- Georgina Deloatch, Propper Manufacturing Co. Inc.
- Shawn A. Doyle, BS, Sterilator Company Inc.
- Sylvie Dufresne, PhD, TSO3 Inc.
- Dan B. Floyd, RM, Nelson Laboratories
- David Michael Gaspanik, Cardinal Health
- Zory R. Glaser, PhD, MPH, CSPDM, Johns Hopkins University
- Joel R. Gorski, PhD, NAMSA
- Thomas L. Hansen, Terumo Medical Corp.
- Charles A. Hughes, SPS Medical

Alternates:
- Marc Chaunet, TSO3 Inc.
- April J. Doering, St. Jude Medical Inc.
- Christopher Dudley, Getinge, U.S.A.
- Daniel Dwyer, BS, Raven Biological Laboratories
- Mark Fischer, Nelson Laboratories
- Thomas J. Frazier, DePuy/Johnson & Johnson
- Charles Oren Hancock, RAC, H&W Technology LLC
- Rachel Hill, Cardinal Health
- Matthew Murray Hull, BSc, RAC, CQA, Aesculap Inc.
- Geetha C. Jayan, U.S. Food and Drug Administration/CDRH
- Bert Kingsbury, Terumo Medical Corp.
- Natalie Lind, IAHCSMM

NOTE—Participation by federal agency representatives in the development of this technical information report does not constitute endorsement by the federal government or any of its agencies.
Foreword

This technical information report was developed by the AAMI Process Challenge Device Working Group under the auspices of the AAMI Sterilization Standards Committee. The objective is to provide technical information that will assist health care facilities in the selection and use of process challenge devices.

Suggestions for improving this technical information report are invited. Comments and suggested revisions should be sent to AAMI, 1110 N. Glebe Road, Suite 220, Arlington, VA 22201-4795.
Introduction

This AAMI technical information report (TIR) is a revision of the AAMI TIR31:2003 and is intended to provide technical information that will assist health care facilities in the selection and use of process challenge devices (PCDs). The PCD is intended to mimic the challenge presented by the product and packaging that is used in a sterilization process. It provides a repeatable challenge to the sterilization process by representing the worst-case conditions for the sterilizing agent to penetrate.

The current version of TIR31, as changed from the 2003 version, contains new sections on extended cycles and PCDs for the ozone sterilization process currently available to the health care user. Also, the hydrogen peroxide sterilization section has been updated.

The design choice (or selection) of a PCD for a particular application depends on the product being sterilized and the sterilization parameters required for the sterilization process. The PCD selected by the user should provide a challenge equal to or greater than the product and packaging that is the most difficult to sterilize. The PCD is designed to constitute a defined resistance to a sterilization process and is used to assess performance of the process. The PCD should be placed in the location deemed to be the most difficult for the sterilizing agent to penetrate. A PCD may contain a biological indicator, a chemical indicator, or a combination of both. The overall challenge of the PCD is a result of the combination of the PCD structure and the indicator. The indicator should not interfere with the function of the PCD. Typically, a biological indicator (BI) containing viable microorganisms is included in the PCD, so that sterilization can be demonstrated in a quantitative manner. Such PCDs are also referred to as BI PCDs.

The routine use of PCDs is important for monitoring of sterilization processes used in health care facilities. It is an integral part of a quality control program.

The information in this PCD TIR encompasses both instructions for the user in constructing an appropriate PCD and the proper use of PCDs for each sterilization process generally used in health care facilities. Commercially prepared PCDs are available from manufacturers. This TIR also provides the user with information on selecting a commercially available PCD and questions the user may want to ask the PCD manufacturer on the proper use of its PCD.
Process challenge devices/test packs for use in health care facilities

1 Scope

This technical information report (TIR) is intended to provide technical information that will assist health care facilities in the selection and use of process challenge devices (PCDs). It is to serve as a resource that health care personnel can use when directing questions to the PCD manufacturer about the suitability, effectiveness, and safety of a specific PCD. Currently, there are no standards that define the performance of these medical devices or provide methods to evaluate them.

This TIR describes user-assembled PCDs that originally used biological indicators (BIs) to evaluate the ability of a sterilization process to sterilize a known challenge. It also describes user-assembled PCDs that use chemical indicators (CIs) to conduct the Bowie-Dick test for air removal/steam penetration in dynamic-air-removal steam sterilization processes.

Preassembled commercial PCDs for sterilization processes that have been cleared for marketing by the U.S. Food and Drug Administration (FDA) can be used as alternatives to the original user-assembled PCDs.

PCDs used in liquid chemical sterilization processes are excluded from the scope of this TIR.

For a complete copy of this AAMI document, contact AAMI at (877) 249-8226 or visit www.aami.org.